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Executive Summary 

We have developed techniques to improve wargame realism without impacting their run 
time by using the Tri-Service Target Acquisition Weapons Software (TAWS) tactical 
decision aid and the rules embodied in the Integrated Weather Effects Decision Aid 
(IWEDA).  This was accomplished by constructing parametric curves representing the 
probability of detection for sensor target acquisition under varied weather conditions, in 
conjunction with system “critical values” for quick determination of go/no-go weather 
situations for platforms or systems.  For initial engagement, critical weather values, or 
rules, initially developed for the Army Research Laboratory/Battlefield Environment 
Division’s (ARL/BED) IWEDA, were used for quick assessments.  For atmospheric 
effects on sensor systems, we employed TAWS to develop quick running polynomial 
curves for various weather conditions coupled with various sensors and target types. 

To implement and verify our techniques, we made weather modifications to the 
Advanced Warfare Simulation (AWARS), developed by TRAC-Ft. Leavenworth.  The 
AWARS model is designed to simulate attrition effects at a finer scale than many other 
models at a unit and platform level of detail.  The AWARS designers have also 
incorporated a comprehensive weather event class library to describe the evolution of 
weather conditions during the course of the AWARS wargame scenario.  This library of 
classes can describe both global (scenario-wide) conditions (the default) and conditions 
that are limited to specific sub-regions of the scenario terrain.  This latter scoping 
capability is useful for description of localized weather effects such as rain or snow 
squalls, lofted dust clouds, or fog banks that appear due to terrain effects or natural 
inhomogeneities in the weather. 

We first modified the direct fire (DF) portion of the AWARS model to reflect impacts 
that time of day, cloud cover, haze aerosol type, target operational state, and 
meteorological visibility have upon the maximum number of resolvable angular spatial 
cycles that can be seen over the span of the target by a particular sensor.  The sensors that 
we used for this effort were from the TAWS long-wave infrared (LWIR) set.  These 
sensors are carried by Service ground and air platforms, so that weather impacts to their 
performance would be widely felt.  This was borne out in tests that we performed 
comparing unit attrition rates under various visibility conditions.   

As a precursor to adding DF weather modifications to the AWARS code, we exercised 
the TAWS model over a widely-spanned, but coarsely-gridded parameter space.  We 
considered tank and armored personnel carrier (APC) targets in both exercised (hot) and 
inactive (cold) operational states, with the sensor pivoted about the target at the four 
cardinal compass directions.  Morning (0900 local time) and afternoon (1500 local time) 
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times of day were considered, as well as cloudless and overcast sky cover.  Two aerosols, 
advection fog and rural background, were used at four visibilities: 0.1, 1, 10, and 100 
kilometers.   

The sensor curves were normalized with respect to maximum detection range for the 
given sensor, and were then averaged (or “aggregated”) over target type, sensor type, 
sensor orientation (with respect to the target), and meteorological conditions (sky cover, 
aerosol type, and visibility), time of day and location.  The aggregation, which is an 
option in the codes, was done to examine the possibility of ignoring certain orientations, 
times of day, weather conditions, etc.  The normalized response data were then fit with 
third degree polynomials in log visibility, with the resulting fit coefficients recorded as 
data members of a new class in the AWARS code.  The maximum detection range for 
each sensor under the same meteorological conditions was also encapsulated as a data 
member in this new class.  Thus, when a given set of atmospheric conditions are 
encountered during the course of an AWARS scenario, the normalized sensor detection 
range curve is constructed, that range is rescaled by the particular sensor’s maximum 
detection range under those conditions, and the result is then used to compute a 
maximum number of resolvable cycles over the target for the target detection task.  The 
resolvable cycles criterion is subsequently used in a target detection model to determine 
the time required by the sensing platform to acquire its target and to begin the attrition 
process. 

The next modification phase involved application of the IWEDA meteorological impacts 
rules set to determine the ability of airborne platforms to participate in the AWARS 
combat scenario as it evolves.  The first class of platforms that received this revision was 
the helicopter unit (in both its attack and reconnaissance forms).  A new class was created 
to handle both the generic IWEDA rule and the specific application of the IWEDA rule to 
the helicopter platform.  The mobility methods were then modified and used by 
helicopter platforms so that the weather-induced grounding or mission abort events could 
be effectively simulated.  We also performed corresponding modifications for fixed wing 
aircraft platforms using the same base IWEDA rule class and a new class that was 
tailored to interface with a fixed wing platform entity.  Tests of these modifications were 
performed internally. 

We further examined and summarized the impacts that application of IWEDA rule 
restrictions and TAWS parametric curves would have upon unit attrition levels and 
attrition timing for a small AWARS scenario.  Although the expected results were 
obtained without any significant increase in run time, they clearly demonstrated the 
importance of weather effects upon combat unit attrition rates.  Asymmetries in the 
sensor technologies and platform mobility employed by opposing forces should tend to 
magnify weather-induced changes in attrition exchange rates.  These trends may be 
explored by application of our modifications. 
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While our techniques were applied to AWARS, they are applicable to a wide range of 
wargames.  Also, since the IWEDA rule set and the TAWS tactical decision aid both 
contain data relevant to all Services, our techniques can be applied to Army, Navy, and 
Air Force wargames. 
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1. Overview 

Army operations research (OR) relies heavily on wargame simulations, which range from 
detailed one-on-one models to aggregated models.  These provide essential information 
for the mission planner and/or analyst, both of whom are striving for emulation of real-
world events to improve Army effectiveness.  To quote from the introduction of Bracken, 
et al., Wargame Modeling (1),  

“The spectrum of military OR spans from detailed, high-resolution microscopic 
analysis to highly aggregate macroscopic analysis.  At the detailed end, specific 
attributes of certain weapon systems are assessed using statistics and probability 
techniques, which are incorporated in simulations or analytic models.  Next on 
that spectrum are operational problems relating to force structure, combat 
development and tactics.  These are often analyzed using combat models… which 
are sets of deterministic or stochastic differential or difference equations 
representing attrition in combat.” 

“At the low-resolution, macroscopic end of the spectrum of military OR analyses 
are theater problems and strategic issues.  These are usually treated by highly 
aggregate combat models and game-theoretic methods.” 

Aggregate wargames are typically analytical simulations of Joint Service campaign-level 
warfare for use by theater-level combat command staffs, the Joint Staff, and the various 
Services.  They support courses of action analyses, force structure capability assessments, 
force structure tradeoffs, cost and operational effectiveness analyses, and joint warfare 
capability assessments.  Table 1 lists the most common wargame simulations the Army 
uses (2, 3); for completeness some of the Joint wargame models are also listed (4, 5). 
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Table 1.  Some common Army and Joint Wargames. 

Army 

Advanced 
Warfighting 
Simulation 
(AWARS) 

Combined Arms 
Support Task Force 
Evaluation Model 
(CASTFOREM) 

Combined Arms 
Analysis Tool for 
the XXIst Century 
(COMBAT XXI) 

Corps Battle 
Simulation 

(CBS) 

Concepts 
Evaluation Model 

(CEM) 
JANUS 

One Semi-
automated Forces 

(OneSAF) 

Vector in 
Commander 

(VIC) 
 

Warfighter's 
Simulation 
(WARSIM) 

   

Joint 

Joint Conflict and 
Tactical Simulation 

(JCATS) 

Joint Simulation 
System 
(JSIMS) 

Joint Warfare 
System 

(JWARS) 

Tactical Warfare 
Model 

(TACWAR) 

The very nature of wargames requires that they run faster than real time - ratios of 1000:1 
are not atypical.  As one might expect, setup times are also lengthy and require input 
from varied sources.  However, meaningful simulation results depend significantly upon 
the accurate characterization of battlefield weather and its impact upon combat and 
surveillance sensors.  As computing and network data transmission speeds have 
improved, the design emphasis on many of the current constructive models has tended 
toward more detailed structural and functional descriptions of combat units and terrain, 
rather than a more complete description of sensor interactions with the atmospheric 
environment.  This situation is understandable, because the foundations of Army 
wargames are the individual combat units, the terrain that they fight upon, and the 
application of tactical doctrine that determines the outcome of their interactions.  Detailed 
descriptions for contemporary vehicles, weapon systems, terrain, and tactics evolve 
relatively slowly and allow for timely and concise implementation in constructive 
simulations.  Sensor technology evolves more rapidly and the comprehensive 
characterization of atmospheric effects upon sensors demands considerable computer 
resources.  Consequently, the priority assigned to implementing treatments of these 
devices and phenomena in wargames has historically not been the highest possible.  

The Army Research Laboratory, Battlefield Environment Division (ARL/BED) has 
developed a methodology for realistically adding weather effects and impacts to 
wargames.  For initial engagement, critical weather values, or rules, initially developed 
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for ARL’s Integrated Weather Effects Decision Aid (IWEDA), are used for quick go/no-
go assessments.  For atmospheric effects on sensor systems, we have employed the Tri-
Service Target Acquisition Weapons Software (TAWS) to develop quick running 
parametric curves for various weather conditions coupled with various target types.   

To implement and verify our techniques, we have made weather modifications to the 
Army Warfare Simulation (AWARS), developed at TRAC-Ft. Leavenworth.  The 
AWARS model is designed to simulate attrition effects at a finer scale than many other 
models at a unit and platform level of detail.  The AWARS designers have also 
incorporated a comprehensive weather event class library to describe the evolution of 
weather conditions during the course of the AWARS wargame scenario.  This library of 
classes can describe both global (scenario-wide) conditions and conditions that are 
limited to specific sub-regions of the scenario terrain.  This latter scoping capability is 
useful for description of localized weather effects such as rain or snow squalls, lofted 
dust clouds, or fog banks that appear due to terrain effects or natural inhomogeneities in 
the weather. 

2. Introduction 

While computer speed has increased dramatically over the past years, it still is not fast 
enough to account for all wargame processes, particularly weather and weather effects.  
ARL/BED is developing new techniques to address this problem.  First, we are using 
weather “critical values” that provide qualitative weather impacts for platforms, weapon 
systems, and operations, including soldier performance.  These critical weather values, or 
rules, currently used in the IWEDA (6) transform raw weather data into weather impacts.  
IWEDA’s collection of rules, with associated critical weather values, aids the commander 
in selecting appropriate operations, platforms, systems, sub-systems, components, or 
personnel under given or forecast weather conditions.  Each system (Army, Air Force, 
Navy, and threat) has its list of relevant rules, which include red-amber-green 
(unfavorable-marginal-favorable) critical value weather thresholds for one or a 
combination of the environmental parameters that affect the system.  An example of such 
a system “red” rule might be “surface winds greater than 30 knots preclude helicopter 
takeoff or landing.”  An example of an “amber” rule for helicopters might be “surface 
wind speed greater than 27 knots may impact aircraft hover.”  Such rules, when 
implemented in a wargame, can be assigned a “success” probability that would allow a 
percentage of helicopters to take off or hover; by assigning a success rate less than one, 
the subsequent play of the wargame would be impacted.  The rules may also be used in 
go/no-go situations such as heavy rain, thick fog, heavy icing aloft, etc.  This latter type 
of implementation is easily accomplished and the impacts are clearly delineated.  Thus, 
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these types of rules can provide relevant and quick information.  However, not all such 
rules do so; in the case of sensors the rules are not so clear cut.  For example, a “red” rule 
for sensors might be “if visibility is less than 1 km, target detection is not possible” and a 
“yellow” rule might be “if visibility is greater than 1 km, but less than 5 km, target 
acquisition is impaired.”  Obviously rules related to sensors provide only general 
guidance, useful for sensor selection but not for target acquisition where the ability of a 
sensor to acquire a target diminishes as the weather degrades.  In addition, the type of 
sensor, its operational wavelength band and the background against which a particular 
target is being viewed, are all additional factors that must be considered in target 
acquisition.  The Tri-Service TAWS (6) has been designed to provide detection, 
recognition, identification, and lock-on range predictions for selected sensors and targets 
using physics-based models in conjunction with the Night Vision and Electronic Sensors 
Directorate’s (NVESD) Acquire (7) algorithm, using input or forecast weather 
conditions.  While TAWS runs relatively rapidly, it still does not approach the high 
execution speeds required to assess weather impacts on the many individual sensors that 
are present in simulations.  Thus, while TAWS has the capability to calculate such effects 
for varied sensors, targets, and weather conditions, setup and run time preclude its direct 
inclusion into wargames.  Therefore, our second, complementary technique, for dealing 
with weather effects on sensors uses TAWS results to construct parametric curves 
yielding predictions of sensor performance that do execute with the requisite speed.   

Remaining sections in this document explain the current and modified weather structure 
in AWARS, and the construction, testing and implementation of algorithms that 
determine weather effects and impacts on Army systems. 

3. AWARS Weather 

3.1 Current AWARS Weather Structure 

Weather has the ability to affect nearly all the functional areas within the AWARS 
simulation.  To this end it is important that AWARS represent weather that is appropriate 
for this level of simulation, changes over time and is easy for developers to integrate. 

Weather needs to be accessible to most entities in the simulation.  Terrain itself is 
actually affected by weather in some cases, but direct weather-terrain interactions are not 
considered in this report.  To access weather information in AWARS requires that some 
capability exist to return weather information based on a given location.  Desired weather 
conditions should include (but are not limited to) percent cloud cover, humidity, and 
temperature and wind speed for various altitudes.     
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In the version of AWARS used here, a structure already exists that divides the battlefield 
into a grid system within the terrain packages.  The application code interfaces to the 
terrain representation through terrain objects and retrieves information about relief and 
vegetation for these objects. 

 

Figure 1.  AWARS terrain cell objects have linkages to other external objects in the scenario. 

The terrain implementation in AWARS also has connectivity to a weather class 
hierarchy.  This was designed to encapsulate weather events that are scripted in a file that 
is loaded at the beginning of an AWARS scenario run.  Figure 2 illustrates how this 
scripted weather mechanism is implemented in the AWARS executive control flow. 

 

Figure 2.  AWARS control flow for loading of scripted weather events. 

As can be seen in figure 2, several additional classes are used in the weather event setup.  
The main AWARS executive class, awars_AwarsMgr, begins the process when it 
invokes its loadWeather() method.  The getConfigFiles() method of a util_ConfigFileMgr 
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object retrieves a pointer to a list of weather event files.  This list is then sequentially 
cycled to extract and schedule weather events.  The weather_Man and weather_Event 
classes manage the access to the basic descriptor class for weather, the weather_Weather 
class, which is shown in a class diagram in figure 3.  This figure lists the public (“+” 
prefix) and private (“-” prefix) data members and methods for this class. 

 

Figure 3.  Member functions and data members of the AWARS weather_Weather class. 

 

The weather_Weather class in turn accesses weather parameter classes to allow 
referencing objects fine-grained control over weather information that they can request.  
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Figure 4 depicts the data members and methods for some of these additional parameter 
classes. 

Note that the default geographic span for a weather event is the entire terrain map.  If it is 
desired that more localized events be specified (for example, snow squalls or 
thunderstorms), additional geometric shape classes are provided.  Additional 
meteorological parameter and shape classes can be added as needed. 
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Figure 4.  Weather parameter classes used in AWARS by the weather_Weather class. 

weather_Cloud 

-double d_cloudCover 
-double d_maxEl 
-double d_minEl 

+bool isBetween(double z); 
+bool isEncompassedBy(weather_Cloud* newEl); 
+double getCloud(); 
+double getMax(); 
+double getMin(); 
+void print(); 
+void setCloud(double minEl, double maxEl, double cloudCover); 
+void setMax(double newValue); 
+void setMin(double newValue); 
+weather_Cloud(); 
+weather_Cloud(double minEl, double maxEl, double value); 
+~weather_Cloud(); 

 
 

weather_Temp 

-double d_maxEl 
-double d_minEl 
-double d_temp 

+bool isBetween(double z); 
+bool isEncompassedBy(weather_Temp*newEl); 
+double getMax(); 
+double getMin(); 
+double getTemp(); 
+void print(); 
+void setMax(double newValue); 
+void setMin(double newValue); 
+void setTemp(double minEl, double maxEl, double temperature); 
+weather_Temp(double minEl, double maxEl, double value); 
+weather_Temp(); 
+~weather_Temp(); 

 
weather_Humidity 

-double d_humidity 
-double d_maxEl 
-double d_minEl 

+bool isBetween(double z); 
+bool isEncompassedBy(weather_Humidity*newEl); 
+double getHumidity(); 
+double getMax(); 
+double getMin(); 
+void print(); 
+void setHumidity(double minEl, double maxEl, double humidity); 
+void setMax(double newValue); 
+void setMin(double newValue); 
+weather_Humidity(); 
+weather_Humidity(double minEl, double maxEl, double value); 
+~weather_Humidity(); 

weather_Wind 

-double d_maxEl 
-double d_minEl 
-double d_wind 
-util_Angle* d_windDir 
+bool isBetween(double z); 
+bool isEncompassedBy(weather_Wind*newEl); 
+double getMax(); 
+double getMin(); 
+double getWind(); 
+util_Angle* getWindDirection(); 
+void print(); 
+void setMax(double newValue); 
+void setMin(double newValue); 
+void setWind(double minEl, double maxEl, double wind); 
+weather_Wind(double minEl, double maxEl, double speed, double windDir); 
+weather_Wind(); 
+~weather_Wind(); 

 
weather_Visibility 

-double d_maxEl 
-double d_minEl 
-double d_visibility 

+bool isBetween(double z); 
+bool isEncompassedBy(weather_Visibility*newEl); 
+double getMax(); 
+double getMin(); 
+double getVisibility; 
+void print(); 
+void setMax(double newValue); 
+void setMin(double newValue); 
+void setVisibility(double minEl, double maxEl, double visibility); 
+weather_Visibility(); 
+weather_Visibility(double minEl, double maxEl, double value); 
+~weather_Visibility(); 

 
weather_CloudHeight 

-double d_cloudHeight 
-double d_maxEl 
-double d_minEl 

+bool isBetween(double z); 
+bool isEncompassedBy(weather_CloudHeight*newEl); 
+double getMax(); 
+double getCloudHeight; 
+double getMin(); 
+void print(); 
+void setCloudHeight(double minEl, double maxEl, double cloudHeight);  
+void setMax(double newValue); 
+void setMin(double newValue); 
+weather_CloudHeight(); 
+weather_CloudHeight(double minEl, double maxEl, double value); 
+~weather_CloudHeight(); 

weather_Circle 

-double d_radius 
-double d_Xcoor 
-double d_Ycoor 

+void setCircle(double Xcoor, double Ycoor, double radius); 
+weather_Ciricle(); 
+weather_Circle(double Xcoor, double Ycoor, double radius); 
+~weather_Circle(); 

 
weather_Rectangle 

-double d_XbottomRight 
-double d_XtopLeft 
-double d_YtopRight 
-double d_YbottomRight 

+void setRectangle(double XtopLeft, double YtopLeft, double XbottomRight, double YbottomRight); 
+weather_Rectangle(); 
+weather_Rectangle(double XtopLeft, double YtopLeft, double XbottomRight, double YbottomRight); 
+~weather_Rectangle(); 
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3.2 Modification of AWARS Weather Structure 

We incorporated weather effects and impacts algorithms into AWARS in such a fashion 
that they are represented without impacting AWARS run time.  Specifically, we modified 
the Intelligence Surveillance and Reconnaissance (ISR) acquisition algorithms and 
Command and Control (C2) processes.  The approach used here was to use TAWS to 
construct parametric curves for ISR allowing for a more realistic representation of target 
acquisition under varied weather conditions.  Second, we incorporated IWEDA rules into 
AWARS for C2 allowing for a quick go/no-go analysis.  Both approaches have little or 
no impact on AWARS run time.   

To accomplish this, we divided the effort into several distinct execution phases that had 
very little interdependence either in theory or in the implemented code.  This permitted 
isolation of the modified code so that the results of each phase could be separately tested 
and revised.  We first added weather effects to the direct fire (DF) portion of the code 
where air and ground units exchange fire and attrition is most directly affected by the 
weather.  Next, we implemented IWEDA rules for weather impacts upon the mobility of 
helicopter (helo) platforms.  We then extended this mobility impacts approach to cover 
fixed-wing aircraft (FWA) platforms after tests of the IWEDA rule interface produced 
demonstrable effects.  Figure 5 depicts the library directories and code files that have 
been affected by these changes. 

 

Figure 5.  AWARS library directories and code files affected by weather effects implementation. 
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4. Development of the Parametric Curves 

4.1 Parametric Curves vs. Tabular Lookup 

Before we implemented algorithms containing parametric curves, it was necessary to 
determine if that approach would be faster than the current tabular lookup in AWARS.  
Differences in AWARS run time for these two techniques was inferred by examining run 
time determined using the parametric curves with the time required when accessing 
acquisition ranges from tables.  

This was done using various compilers and, in 2003, state-of-the art computer systems.  
We used Silicon Graphics® (SGI®) machines running under the IRIX® 6.5 operating 
system with a CPU speed of 175 megahertz (MHz) and the native GNU FORTRAN77 
and GNU C compilers.  In addition we used PC machines running under Red Hat® 8.0 
with Intel® CPU speeds of 400 and 930 MHz and the GNU FORTRAN77, Lahey™ 
FORTRAN90, GNU C and Microsoft Visual C++® compilers.  Since, in a wargame, 
target acquisition information may be called for a large number of times, we performed 
our tests with 107 operations.  As may be seen in figures 6 and 7, the parametric curves 
provided a significant improvement over accessing the tables. 

 

Figure 6.  FORTRAN run time comparison: parametric curves vs. tabular lookup for 107 
operations. 
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Figure 7.  C run time comparison: parametric curves vs. tabular lookup for 107 operations. 

4.2 Parametric Curve Construction 

TAWS version 2.2 was used to determine detection ranges as a function of weather using 
infrared (IR) sensors coupled with various targets.  A series of codes, written in 
FORTRAN90, were constructed to read the TAWS output file (met.dat).  This file was 
examined for errors–sensors that had only one field of view (FOV) or excessively large 
ranges were excluded.  A second program optionally averaged over the various weather 
parameters (see table 2), primarily as a function of sensor FOV, time of day (TOD) and 
aerosol type.  Once these averages were available, the detection ranges for the various 
combinations were normalized to an average maximum detection range and subsequently 
fit to a third-order polynomial (8).  While we were interested in examining sensor 
averages, the codes were also generated to examine a specific sensor’s response to 
varying meteorological conditions.   

At the time of the initial study, TAWS contained 26 different sensors, many of which had 
narrow FOVs (NFOV) and wide FOVs (WFOV), 7 army-type vehicular targets with 4 
(N, S, E, W) orientations and 3 operational modes (off, idled, exercised), 23 stationary 
targets, 7 surface weather types, 6 cloud types, and other sundry quantities.  Since there 
are an unlimited number of conditions (weather, sensor, target, TOD, location) that could 
occur on the battlefield, we initially determined weather impact on sensors by 
aggregating many of these conditions.  However, aggregating this number of possibilities 
would have been next to impossible and would have provided meaningless results.  Thus, 
we restricted our parameter space to cover all 26 sensors, 2 targets with all orientations 
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and 2 operational states, 3 seasons, 2 locations, 2 TOD, 4 visibilities, 2 aerosol types, and 
1 cloud type.  These parameters are presented in table 2. 

Table 2.  Parameter space used for determination of the DF curves. 

Sensors 
 FOV 
 platform 

26 IR  
 narrow and wide 
 helicopter @ 300’ altitude 

Targets 
 state 
 orientation 

T-80, APC 
 off & exercised 
 N, S, E, W  

Meteorology 
 visibility 
 aerosols 
 cloud cover 

 
 0.1, 1.0, 10, 100 km 
 rural, fog (moderate radiation) 
 clear, overcast 

Locale  
 longitude 
 latitude 
 background 

 
 0°  
 0°, 30° N  
 Desert sand 

Season 
 0° 
 0°, 30° N  

 
 equinox & winter solstice 
 summer & winter solstices 

TOD 0900 & 1500 

TAWS was run for all 26,624 possible combinations listed in table 2 and the results 
concatenated into a database.  Using this database, we could aggregate the results over 
the quantities in table 2, e.g.:  

• location / season,  

• aerosol type, 

• cloud cover / clear air, 

• FOV, 

• Line of Sight (LOS) azimuth, 

• sensor,  

• target type, 

• target operation state. 

However, given the large number of possible combinations that could be made using the 
database, we averaged over 116 arbitrary chosen combinations, and determined detection 
range primarily as a function of:  

• visibility, 

• aerosol type, and  

• FOV. 
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These results were then normalized using the average maximum detection range as 
determined by the 100 km visibilities.  This provided us with four normalized detection 
ranges as a function of the four visibilities which we then curve fit to a third-order 
polynomial.   

4.2.1 Examples 

An example of a resultant curve for the two aerosol types (fog and rural) and two 
atmospheric conditions (clear and overcast) at 0900 is shown in figure 8; the same 
conditions, but at 1500, are shown in figure 9. 
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Figure 8.  Normalized detection range as a function of aerosol type and 

visibility for an average sensor and vehicle type at 0900. 
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Figure 9.  Normalized detection range as a function of aerosol type and 

visibility for an average sensor and vehicle type at 1500. 
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Figure 10.  Scenario is looking north, 

with the exhaust at the rear 
of the tank. 

Figures 8 and 9 show a rather interesting result: regardless of TOD, detection range is not 
heavily dependent upon cloud cover but is dependent upon aerosol type.  The explanation 
for this is fundamental to the aerosol extinction; the rural extinction coefficient is  
0.78 km-1 and the fog extinction coefficient is 0.87 km-1 or 12% higher per kilometer, 
leading to lower detection ranges in the fog aerosol.  Inter-comparison of figures 8 and 9 
shows the effects of TOD where we can see that, under clear conditions, the vehicles heat 
up more rapidly when compared to the desert background.  We also note that this does 
not occur anywhere to the same degree when the conditions are overcast and the 
upwelling radiation is trapped, leading to more uniform temperature conditions.  
Appendices B (fog aerosol) and C (rural aerosol) contain the third-order polynomial 
coefficients for the 116 combinations for both NFOV and WFOV, and a sub-set of over 
120 curves concatenated into 30 graphs.  Inspection of these graphs provides insight into 
whether or not this technique is providing correct results.  For example, the graphs show 
that it is always more difficult to detect targets in the afternoon, as determined by the 
1500 curves, than it is in the morning (the 0900 curves); this is due to the increased 

ground temperature in the afternoon making the ΔT 
between target and background smaller.  They also 
show that it is easier to detect an exercised tank, 
under all conditions, than it is an off tank, although 
the difference in detection range is less in the 
summer than in the winter.  In the winter the 
disparities between morning and afternoon 
detection ranges are greater due to the relatively 
larger surface temperature ranges.  Although these 
differences in detection ranges can easily be 
explained due to differing surface and tank 
temperatures and their underlying albedos, there are 

some apparent anomalies when examining this premise as a function of azimuth angle.  
For example, in all of the figures with the tank exercised, the northerly viewing direction 
has the highest detection range.  The reason for this becomes apparent when viewing 
figure 10, which shows the scenario geometry and additionally depicts the tank’s exhaust.  
The target heading was always north, thus when viewing in a northerly direction, the tank 
exhaust provides an overall hotter temperature, leading to longer detection ranges.  These 
and many other frequently obvious effects can be determined from the graphs, thus 
validating our technique.   

Many of the curves exhibit an overshoot at visibilities greater than 10 km.  This is clearly 
due to the limited number of points used for construction of the polynomial curve: 
TAWS’ calculations with additional visibilities would correct this situation.  Also, many 
of the figures in appendices B and C require extreme magnification to differentiate the 
various curves, since a slight variation in atmospheric conditions may only produce a 
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slight difference in detection range, and some combinations may produce detection 
ranges that are nearly identical to other, different, combinations. 

4.3 Implementation for DF 

The TAWS results described in the preceding were encapsulated into a new class called 
weatherAcquire that resides in the AWARS libweather subdirectory and operates in 
conjunction with the df_SearchModel class in the libdf subdirectory.  We examined the 
df_SearchModel class to identify an appropriate algorithmic method and point in the code 
where the DF behavior of both ground and airborne entities could be modified by local 
weather conditions.  The DF target search algorithm used in AWARS is essentially the 
NVESD Acquire model, which applies a resolvable angular cycles-over-target criterion 
to determine the probability that the target has been detected at a given range and set of 
scenario conditions.  This algorithm is implemented in the df_SearchModel::acquire() 
method, as depicted in figure 11.  

unit_DF

df_AcqRateInfo* acqRateInfo

syscomponent_DirectFire* 
fireComponent

bool findWpnPairings(); 

libunit / unit_df.cc

df_Component

df_AcqRateInfo* 
calculateAcquisition();

libdf / df_component.cc, .h

df_AcqRateInfo

df_SearchModelSensor* 
d_sensorUsed

double d_acqRate

double d_pInfinity

bool canAcquire();

df_SearchModelSensor* 
getSensor();

double getAcqRate();

void setValues();

libdf / df_dfsearchmodel.h, .cc

df_SearchModel

int determineWeatherIndex();

int getDayNightIndex();

void acquire();

void loadAttenuationDataFile();

unit_DF

df_AcqRateInfo* acqRateInfo

syscomponent_DirectFire* 
fireComponent

bool findWpnPairings(); 

libunit / unit_df.cc

df_Component

df_AcqRateInfo* 
calculateAcquisition();

libdf / df_component.cc, .h

df_AcqRateInfo

df_SearchModelSensor* 
d_sensorUsed

double d_acqRate

double d_pInfinity

bool canAcquire();

df_SearchModelSensor* 
getSensor();

double getAcqRate();

void setValues();

libdf / df_dfsearchmodel.h, .cc

df_SearchModel

int determineWeatherIndex();

int getDayNightIndex();

void acquire();

void loadAttenuationDataFile();

 

Figure 11.  Dependency chain used to determine DF weather modification placement. 

The Acquire algorithm approximates the asymptotic (infinite time) probability of 
detection P∞ as a function of the maximum number of spatial resolution cycles N over the 
target as a function of the form 
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and (N50)D is the number of cycles required for 50% detection probability by a 
representative ensemble of observers.  The (N50)D value is dependent upon the level of 
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background clutter in which the target is embedded, ranging from 0.5 cycles in low 
clutter to 2 cycles in high clutter environments.  The value that we used in our weather 
effects modification is 0.75 cycle, which is midway between the low clutter (0.5 cycle) 
and moderate clutter (1 cycle) values.  The determination of the quantity N, the maximum 
number of resolvable cycles across the target, is the central point at which we apply DF 
weather modifications.  The target critical dimension Htarg, target range R, and maximum 
resolvable spatial frequency fx for the given sensor at the apparent target ΔT (in units of 
cycles per radian) are related to N by the relation (9) 

.
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H
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x=       (3) 

The maximum resolvable spatial frequency fx for a given maximum detection range RD is 
also given by the expression 
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where RD is a function of sensor type, meteorological visibility V, TOD, cloud cover, 
target state, and haze aerosol type.  We determine RD through application of the TAWS 
parametric curves developed above: 

,)(100 VRR DD ℜ=      (5) 

where RD100 is the TAWS unlimited visibility detection range (considered to be 100 km 
visibility) for the given sensor and scenario conditions and ℜ(V) is a normalized TAWS 
sensor aggregate response function for detection range as a function of visibility.  Note 
that RD100 is specific to a particular sensor, but that ℜ(V) is an average over a sensor class 
for a given set of atmospheric conditions.  This latter qualification greatly reduces the 
amount of array indexing overhead.  The results in equations (4) and (5) may be applied 
to equation (3) to yield the approximate result 

( ) .)(100
50 V

R
R

NN D
D ℜ≅      (6) 

This approximation of N may then be applied to the results in equations (1) and (2) to 
yield a value for the asymptotic probability of detection P∞ under a given set of weather 
conditions for a specific TAWS sensor, denoted here as S1.  Figure 12 compares P∞ 
versus target range for S1 for two target states (exercised and inactive) and two 
visibilities (100 km and 2 km) using the fog aerosol.  For this relatively large aerosol, 
visibility effects are quite pronounced.  Target state is also very significant at both 
visibilities.  Figure 13 shows the same set of conditions for the rural aerosol.  The 
visibility is virtually insignificant in this case, due to the much smaller size parameter for 
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this aerosol.  The applicability of the aggregate sensor response function ℜ(V) may also 
be examined by comparing it with the curve fit for S1 in figure 14.  In this case, the 
results compare very closely for the 2 km meteorological visibility, thereby showing the 
applicability of using the aggregate sensor response function ℜ(V) in place of S1. 

 

Figure 12.  Asymptotic detection probability for advection fog aerosol, 0900 local time,  
clear sky, using a TAWS sensor. 

 

Figure 13.  Detection probability for the rural aerosol, identical sensor and scenario 
conditions as figure 12. 
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Figure 14.  Sensor S1 detection probability for 2 km visibility, comparing aggregate and 
individual sensor response functions. 

5. Critical Values/Rules 

5.1 Helo and Fixed Wing Aircraft Mobility Modification 

Another mechanism through which weather can affect wargame platforms is through 
limitation of mobility.  However, it is necessary to distinguish between terrain conditions 
that are the result of recent weather history (for example, prolonged rains that create 
muddy terrain) and direct, real-time weather impacts that impose safety restrictions on 
platform operations (for example heavy snow that prevents fixed-wing aircraft from 
operating safely).  While the interconnection between the long-term weather behavior and 
the terrain condition is important, it was beyond the scope of the work reported here.  We 
focused instead upon direct weather effects upon airborne platforms as the most 
immediate means for demonstration of useful modifications to the AWARS package.   

As shown previously in figure 5, the rule set interface that we developed was inserted 
into the helicopter libunit/helo subdirectory source code modules unit_heloresunitc2 and 
unit_helorequesthandler.  These modules contain the vehicle mission control methods 
that determine whether a helicopter can initiate or continue flight operations in the 
presence of adverse environmental conditions.  Access to the helicopter-specific rules is 
provided by the weather_heloIWEDArules class in the libweather subdirectory, also 
shown in figure 5.  The weather_heloIWEDArules class is implemented as a singleton 
design pattern, as only a single instance of this class is needed during the course of an 
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bool unitHeloRequestHandler::wouldUnitTypeFly(const frcstr_UnitSRC & src, const terrain_Coord & faaLocation) 
 

terrain_TerAgg * heloUnitTerAgg = faaLocation.getTerAgg(); 
 

util_Weather * weather = heloUnitTerAgg->getWeather(); 
 

testWindSpeed = weather->getWindSpeed(0.0); 
 

weather_HeloIWEDARules * weatherRules = getHeloIWEDARules(); 
 

OTC_IList<frcstr_PlatformGroup * > platforms; 
 

d_owner->getPlatforms( & platforms); 
 

frcstr_PlatformGroup * platform = 0; 
 

string platformName; 
 

platform = platforms.item(); 
 

platformName = platform->getPlatformType()->getName(); 
 

weatherRules->checkWindSpeedRules(testWindSpeed, platformName)

AWARS simulation.  When this class is instantiated, the rules data are extracted from a 
file named “helo_impacts.data” and are stored in vector container data members of the 
singleton weather_HeloIWEDARules class.  These private container data members are 
organized by the applicable meteorological parameter and are accessed by public check 
methods in the unit_HeloRequestHandler and unit_HeloResUnitC2 classes.  Figure 15 
illustrates the dependency mechanism and execution sequence, through which the 
helicopter rules are employed, for the example of the unit_HeloRequestHandler class.  
Note that the highlighted items are not yet implemented.  The last line causes the 
wouldUnitTypeFly method to return a Boolean ‘false’ value if the wind speed exceeds 
the IWEDA threshold for a safe takeoff for a particular helicopter platform. 

Figure 15.  Example of the IWEDA rule implementation in the unit_HeloRequestHandler class.  

Instead of directly extracting weather parameter information from the native AWARS 
weather class interface, we inserted “hardwired” meteorological parameter values into the 
code.  A similar work-around was used to test the DF weather effects methodology.  Our 
implementation of the weather effects code in the unit_HeloResUnitC2 class is nearly the 
same as for the unit_HeloRequestHandler class.  The primary difference between the two 
class implementations is how they use the rule set.  The unit_HeloRequestHandler class, 
as its name implies, can force denial of requests for platform launch before a mission gets 
under way.  The unit_HeloResUnitC2 class, on the other hand, can abort a mission that is 
in progress. 

The rules data base that we have provided with our prototype software is limited in scope, 
but should be easily extended for future needs.  We have included mobility and 
operability rules for the vehicles listed in table 3. 
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Table 3.  Platforms included in prototype IWEDA rule data files. 

Tanks APC/AFV/IFV FWA Helo Artillery 

M1A1 
T80 
T72 

M2 (Bradley) 
M113 

BMP-1/2/3 
Predator UAV 

UH-1 (Huey) 
AH-64 (Apache) 

UH-60 
(Blackhawk) 

MLRS 

The AWARS coding for the mobility methods for the FWA platforms is slightly different 
than that used for the helicopter platforms, so the implementation of weather effects 
classes for FWA platforms differs slightly as well.  The FWA weather effects 
modifications were inserted into just the unit_FWAResUnitC2 class, and are 
implemented and used in much the same way as in the unit_HeloResUnitC2 class.  Table 
4 summarizes the classes and methods for both the helicopter and FWA platforms where 
the weather modifications were applied, and what actions the modifications specifically 
performed. 

Table 4.  Helicopter and FWA classes that were modified to incorporate IWEDA weather rule impacts. 

Class Method Action 

unit_HeloRequestHandler wouldUnitTypeFly() Accept/Deny mission request 

unit_HeloResUnitC2 assessEnvironmentalConditions() Continue/Abort mission 

unit_FWAResUnitC2 assessEnvironmentalConditions() Continue/Abort mission 

5.2 Intelligence Surveillance and Reconnaissance Modifications 

Since weather effects are felt most directly as limitations of mobility for airborne systems 
and reduction of visibility for both ground-based and airborne systems, we focused our 
initial modification efforts on the efficiency of DF for ground systems and the mobility of 
attack helicopters.  The perception of the state of friendly and hostile forces on the 
battlefield by a given unit is also important, and is dependent upon that unit’s access to 
ISR resources.  A significant portion of the ISR function is carried out by airborne 
platforms (in particular, helicopters, and fixed wing aircraft), so that weather-induced 
mobility restrictions imposed upon these platforms (as previously described) will have 
repercussions for ISR.   

Even more important than mobility considerations is the weather-impacted performance 
of ISR electro-optical sensors.  Both ISR and DF sensors are similarly affected by 
adverse weather conditions, but have different performance implementations in AWARS.  
As previously discussed, the DF sensor class utilizes a resolvable cycles over target 
criterion to perform targeting functions.  In the AWARS ISR process, a range band 
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probability of detection (and recognition/identification) table lookup procedure is used.  
The probability of detection for a given target is determined by the maximum detection 
range provided out of an ensemble of sensors carried by an ISR platform.  Currently, this 
maximum range determination is obtained for each sensor in the ensemble by the 
getMaxDetectionRange() method of the sensorprot_SensorType class, which uses results 
from the sensorprot_ProbTable class.  This latter class also calculates a table lookup-
based probability of detection through the getProb() member function.   

Though we did not implement a direct ISR probability of detection, recognition, or 
identification algorithm into the AWARS model, we believe that this could be achieved 
either by 1) modification of the sensorprot_ProbTable::getProb() method to use the DF 
resolvable cycles over target algorithm previously described, or 2) modifying the 
probability range band tables to reflect more comprehensive weather impacts.  Neither of 
these options will be particularly easy to implement because they will both require setup 
of an interface to the AWARS weather class (and substantial additions to the class 
methods).  The first option (using the DF algorithm) will likely provide the fastest and 
most direct interface, at the cost of greater code complexity and difficulty in modifying or 
expanding the sensor database.  The second option will probably require less 
modification of existing code, but will require offline compilation of the sensor 
performance database to cover a wider range of weather conditions. 

6. Results 

Meteorological visibility effects on DF exchanges were modeled as modifications to 
target detection ranges for firing platforms.  As previously explained, these target 
detection range results are curve fits derived from TAWS, aggregated within a sensor 
class and waveband, parameterized by aerosol type, sky cover, and TOD (among other 
environmental factors).  The curves, which have significant execution speed advantages 
in many cases, are used in place of interpolated look-up tables.  

To determine whether or not our methodology could improve the estimation of weather 
impacts in the target acquisition algorithms without increasing run time, we obtained beta 
versions of AWARS (10).  We implemented systems operation rules existent in the 
IWEDA rule library and a set of parametric curves for target acquisition ranges.  Since 
the AWARS code is extremely complex, we focused our efforts on weather impacts for 
helicopters using only IR sensors.  Due to the fact that the rule and parametric curve 
approaches are significantly different, we found it necessary to develop a scenario where 
both implementations, and their effects, would be clearly delineated.  Thus, the scenario 
that we chose was carried out under high (clear) and low (1 km) visibilities, with a blue 
helicopter attack on red ground forces during daylight hours under high (≥ 30 mph) and 
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low (< 30 mph) wind conditions, coupled with a subsequent blue ground assault on red 
ground forces during nighttime hours.  Red was placed in a defensive position with poor 
night detection capability.  We examined four cases: 

• No Wind and Low Visibility 

• No Wind and High Visibility  

• High Wind and Low Visibility  

• High Wind and High Visibility  

To examine critical value effects, an arbitrary helicopter rule was introduced “if winds 
exceed 30 knots, helicopters cannot fly.”  Such a rule allowed us to examine whether or 
not there is any effect of grounding the attack helicopter on red attrition.  Similarly, by 
allowing the ground assault to occur at night under high and low visibility conditions, 
coupled with red’s poor night detection capability, permitted us to examine blue and red 
attrition under those conditions. 

First we examine the high visibility case with no wind and high wind conditions.  The 
first noticeable difference between wind and no wind is the different red attrition levels 
slightly after the beginning of the battle (figure 16).  With high levels of wind, the blue 
attack helicopter is grounded, resulting in no attrition for red until the onset of the ground 
battle (note that, in figure 16, the blue no wind case overlays the red high wind case).  
Examination of figures 16–18 show the effect of the attack helicopter grounding on 
blue’s ground forces.  Both the advance blue unit (blue 1) and the secondary blue unit 
(blue 2) have significantly higher attrition when the attack helicopter cannot attrit any of 
the red force due to its being grounded under high wind conditions.  Both of these effects 
are clear indicators that the helicopter rule is working correctly. 

Turning our attention now to a detailed comparison of figures 17 and 18, high visibility 
vs. low visibility respectively, we can see the effects of DF attrition.  This is most easily 
seen by comparison of the windy conditions, where the blue attack helicopter was not 
available.  We can easily see that all blue attrition is less, while the red attrition is greater; 
a confirmation that our parametric sensor curve is implemented and working correctly. 

It is also instructive to examine this scenario by looking at the primary units – blue 1, 
blue 2, and red individually under the four possible weather conditions.  To that end, 
figures 19, 20, and 21 show the ground assault under the four weather conditions: windy, 
low visibility; windy, high visibility; calm, low visibility; calm, high visibility for the 
three ground units.   

We look first at the forward deployed blue unit, blue 1 (figure 19), which has sustained 
the largest losses.  In general, we see that this unit does better in the no wind cases, due to 
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the initial red attrition by the blue attack helicopter.  Visibility effects on this unit are 
negligible in windy and calm conditions. 

The situation for the secondary blue unit, blue2, is somewhat different (figure 20).  
Again, blue2 does better in no wind conditions when the attack helicopter is available to 
fly.  However, again, in windy conditions blue losses are more severe.  The increase in 
blue2 attrition in the windy, high visibility conditions towards the end of the battle is due 
to red subunits moving to a delay position (11). 

Finally, we see from figure 21 that in no wind conditions, red never recovers from 
attrition due to the blue attack helicopter units.  Overall, red does best in windy, high 
visibility conditions. 

We constructed a second scenario where we could examine the effects of the vehicle state 
(off or exercised), differing visibilities (0.5, 2.0, and 25 km) in foggy conditions, and 
implementing a different helicopter rule–grounding of the attack helicopter by heavy rain.  
These results are shown in figures 22–27.  While it is unlikely that any helicopter would 
fly in 0.5 km visibility, we have simulated such a scenario in order to heuristically 
examine the effects.  Thus, in figure 22, we show attrition of red vehicles as a function of 
their state (exercised or off), due to an attack by a blue helicopter.  In figure 23, the 
subsequent ground force attack under the same 0.5 km fog for the two vehicle states is 
shown.  Both figures show the expected results–exercised vehicles are more easily 
detected and attrited.  Figures 24 and 25 show red attrition for vehicles in an off state as a 
function of fog visibility by both the blue attack helicopter and ground forces.  It may 
easily be seen that as the visibility increases, so does the red attrition.  Finally, in figures 
26 and 27, we show the effects of allowing the attack helicopter to fly or be grounded due 
to heavy rain, in a 2 km visibility fog on both blue and red ground units.  Red does worse 
when the weather is clear and the blue attack helicopter can fly; blue does worse when 
the weather is rainy and its attack helicopter is grounded. 

The purpose of these simulated battles was to show that the critical rules and the 
parametric sensor curves can, and do, predict realistic outcomes without incurring 
additional run time.
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Figure 16.  Blue and Red fractional attrition as a function of simulated  
battle time under high visibility conditions; inset is figure 17. 
The grey shaded area indicates nighttime; solid lines are the  
no wind case; lines with symbols are the high wind case. 
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Figure 17.  Inset from figure 16: Blue and Red fractional attrition as a  
function of simulated battle time under high visibility conditions. 
Line indicators are as the same as in figure 16. 
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Figure 18.  Blue and Red fractional attrition as a function of simulated  
battle time under low visibility conditions.  Solid lines are 
the no wind case; lines with symbols are the high wind case. 

0.00

0.25

0.50

0.75

1.00

5.2 5.7 6.2

Simulation Time (h)

Fr
ac

tio
na

l U
ni

t S
tr

en
gt

h

No Wind, Low Visibility
High Wind, Low Visibility
No Wind, High Visibility
High Wind, High Visibility

 

Figure 19.  Blue 1 fractional attrition as a function of simulated battle time. 
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Figure 20.  Blue 2 fractional attrition as a function of simulated battle time. 
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Figure 21.  Red fractional attrition as a function of simulated battle time. 
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Figure 22.  Red attrition as a function of vehicle state due to blue attack  
helicopter in a 0.5 km visibility fog. 
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Figure 23.  Red attrition as a function of vehicle state due to blue ground  
forces in a 0.5 km visibility fog.  The blue helicopter attack has  
occurred previously. 
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Figure 24.  Red attrition from blue attack helicopter under varying visibilities. 
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Figure 25.  Red attrition from blue ground assault under varying visibilities. 
The attack from the blue helicopter  has occurred previously. 
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Figure 26.  Red attrition from blue ground assault under a 2 km visibility. 
The attack helicopter was grounded due to heavy rain. 
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Figure 27.  Blue attrition from red under a 2 km visibility.  The blue  
attack helicopter was grounded due to heavy rain. 
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7. Summary and Conclusions 

By familiarizing ourselves with the structure and function of the AWARS wargame we 
identified and exploited appropriate points where weather effects would improve the 
wargame realism without impacting run time.  This was accomplished by implementing a 
treatment of DF detection processes for LWIR sensors by fitting TAWS results under 
different meteorological conditions to third-order polynomial curves.  The execution 
speed of this modification compared favorably with existing table lookup methods.  
Second, we added interface classes and methods to the AWARS weather code library so 
that weather critical values, more commonly referred to as rules, could be queried under 
adverse weather conditions.  These rules are used to determine if mobility restrictions are 
applicable to helicopter and fixed-wing platforms and to impose restrictions where 
appropriate. 

The viability and significance of the DF algorithm and rules weather modifications were 
tested by comparing AWARS scenario evolution under optimal weather conditions with 
results for the same scenario under adverse weather conditions.  These tests confirmed 
that adverse weather caused significant modification of attrition timing and levels for 
both ground maneuver and airborne units in a logically consistent manner.  

Finally, the TAWS code and/or the constructed database and auxiliary codes, may be 
obtained by writing or emailing the following individual: 

  Army Research Laboratory 
  Attn: AMSRD-ARL-CI-EE (Dr. R. Shirkey) 
  WSMR, NM  88002-5501 
  rshirkey@arl.army.mil  

Information regarding the critical values, or rules, database may be obtained by writing or 
emailing the following individual: 

  Army Research Laboratory 
  Attn: AMSRD-ARL-CI-EE (R. Szymber) 
  WSMR, NM  88002-5501 
  rszymber@arl.army.mil 

mailto:rshirkey@arl.army.mil
mailto:rszymber@arl.army.mil
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Appendix A.  Representative Rule Classes for Army, Navy (Marines) 
and Air Force  

Operations, systems, sub-systems and components on the same row are independent and 
not linked.  Note that, a system could be a helicopter, its sub-system could be an engine, 
and an engine component could be a turboshaft.  However, if the system is considered to 
be the engine, then the turboshaft would be a sub-system; a low horsepower engine could 
be a component of some larger system; a missile launcher system could have the missile 
as a sub-system and the missile’s sensor as a component.  The Integrated Weather Effects 
Decision Aid (IWEDA) provides an easy method for delineating this structure.  

Table A-1.  Representative Army rule classes for operations, systems, sub-systems, and components. 

Army 

Operations Systems Sub-Systems Components 

Aerial Forward 
Observer  Aerostat   Aerial recovery  Acoustic sensors 

Air assault    Aircraft (all) Aerostat (platform) Ammunition 

Air attack    Amphibious assault 
vehicle  Ammunition Antenna 

Air refueling    Laser IR observation 
set Chain gun  Artillery fuzes 

Airborne airdrop  Night vision goggles
  Collapsible water tank Aviation gasoline 

Aircraft (fixed- and 
rotary-wing)  

Night vision sights 
  Engines Batteries 

Aircraft Landing Personnel – cold/heat 
Injuries  Gatling gun Diesel engine 

Amphibious    Tanker  Generators Fuels & Gasolines (all) 

Arming/Rearming    Target pointer 
illuminator Guided bombs Grease  

Bombing   Truck  
High Explosive Anti-
Tank (HEAT) 
warheads  

High Frequency (HF) 
Interceptor  

Bridging   Unmanned Aerial 
Vehicle  Hydraulic pumps HF Jammer  

Combat Search & 
Rescue    Personnel HF Radio  
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Army 

Operations Systems Sub-Systems Components 

Concealment and 
Camouflage    Magazines Munitions 

Cross-country 
movement mobility    Micro air vehicles Rockets 

Field artillery  Mission payloads Hydraulic O-Ring 
Seals 

Fording   Mission Payload 
Sensors Hydraulic Systems 

Fueling/refueling    Missiles Jet Fuel 

Ground maneuver  Mortar rounds Launcher  

Logistics     Night sights Lubricants 

Medical     Night Vision Goggles Military Standard 
Gasoline Engine 

Mortar     Rotors (main, all 
types)  Mines 

Night vision goggles  Rockets Missiles 

Ordinance     Unmanned Aerial 
Vehicles Plastic Explosives 

River crossing     Portable Rugged 
Personal Computer 

Unmanned Aerial 
Vehicle   Uninterruptible Power 

Supply 
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Table A-2.  Representative Navy rule classes for operations, systems, sub-systems, and components. 

Navy 

Operations Systems Sub-Systems Components 

Aerial resonance  Boats Aerial mines Acquisition radar 

Air defense  Fixed Wing Ammunition  Ammunition 

Aircraft carrier Flight operations Antennas Cannons 

Airborne  Helicopters Bombs IR guidance 

Airdrop Operations Personnel Cruise missiles IR seekers 

Airborne refueling  Surface to air missiles Fuels Launchers 

Amphibious  Tracked vehicles Grenade launchers Radar 

Aviation  Unmanned aerial 
vehicles 

Missiles Thermal sights 

Engineer  Wheeled vehicles Mortars TV guidance 

Ground maneuver   Night vision goggles  

Helicopter    Personnel maintenance  

Intelligence    Personnel 
swimmer/diver 

 

Signal 
Communications   

 Rocket launchers  

Sub-Surface  Navigation radars  

Surface ships  Thermal viewers  

 

Table A-3.  Representative Air Force rule classes 
for systems. 

Air Force 

Systems 

Aircraft 
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A Special Note about Monikers used in Appendices B and C 

Table A-4 applies to both appendices B and C. 

Each moniker, used in the following table, is a concatenation of the various atmospheric 
conditions that we used; with the exception of the 0900 time period, the first three 
characters of each atmospheric condition were used.  This cipher is presented in table  
A-4. 

Table A-4.  Monikers and their meaning as used in the various tables 
and figures in appendices B and C. 

Moniker Meaning 
Fog Fog 
Rur Rural 
Tan Tank 
Exe Exercised 
Off Inactive 
900 0900 
150 1500 
Win Winter 
Sum Summer 
Nor North 
Sou South 
Eas East 
Wes West 
Ove Overcast 
Cle Clear 
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Appendix B.  Third-Order Polynomial Coefficients and their Curves for 
the Fog Aerosol for a NFOV and WFOV Average IR Sensor 

Table B-1.  Third-order polynomial coefficients curve fit to averaged quantities as represented by 
moniker for average sensor viewing through a fog aerosol. WFOV results are shown. 

Moniker a0 a1 a2 a3 

Average 
Maximum 
Detection 

Range 
 150CleFog             0.721 0.355 -0.056 -0.026 3.59 
 150OveFog             0.707 0.364 -0.048 -0.030 3.59 
 900CleFog             0.619 0.398 0.001 -0.052 3.42 
 900OveFog             0.545 0.406 0.038 -0.063 3.25 
 Tan900CleFog          0.711 0.343 -0.051 -0.024 2.69 
 Tan150CleFog          0.813 0.282 -0.106 0.006 2.80 
 Tan900OveFog          0.668 0.363 -0.027 -0.036 2.68 
 Tan150OveFog          0.805 0.289 -0.102 0.003 2.79 
 TanExe150OveFog       0.830 0.270 -0.118 0.013 2.81 
 TanExe900OveFog       0.763 0.323 -0.080 -0.011 2.78 
 TanExe150CleFog       0.830 0.269 -0.116 0.012 2.82 
 TanExe900CleFog       0.773 0.314 -0.084 -0.008 2.78 
 TanOff900CleFog       0.634 0.379 -0.009 -0.044 2.58 
 TanOff150CleFog       0.795 0.295 -0.096 0.000 2.78 
 TanOff150OveFog       0.779 0.308 -0.086 -0.006 2.76 
 TanOff900OveFog       0.557 0.409 0.035 -0.065 2.56 
 TanOff900SumOveFog    0.564 0.406 0.030 -0.062 2.45 
 TanOff900WinOveFog    0.524 0.422 0.055 -0.074 2.63 
 TanOff150SumOveFog    0.795 0.294 -0.094 -0.001 2.77 
 TanOff150WinOveFog    0.732 0.349 -0.065 -0.021 2.74 
 TanOff900NorOveFog    0.547 0.402 0.036 -0.062 2.51 
 TanOff900EasOveFog    0.524 0.402 0.053 -0.068 2.44 
 TanOff900WesOveFog    0.611 0.416 0.012 -0.061 2.66 
 TanOff900SouOveFog    0.539 0.414 0.043 -0.067 2.60 
 TanExe900SumOveFog    0.763 0.323 -0.080 -0.011 2.78 
 TanExe900WinOveFog    0.757 0.330 -0.078 -0.013 2.79 
 TanExe150SumOveFog    0.835 0.265 -0.120 0.014 2.81 
 TanExe150WinOveFog    0.811 0.289 -0.111 0.007 2.81 
 TanExe900NorOveFog    0.843 0.264 -0.128 0.018 2.85 
 TanExe900EasOveFog    0.746 0.337 -0.072 -0.017 2.76 
 TanExe900WesOveFog    0.769 0.319 -0.087 -0.008 2.78 
 TanExe900SouOveFog    0.695 0.371 -0.034 -0.038 2.72 
 TanExe150NorOveFog    0.860 0.249 -0.136 0.023 2.85 
 TanExe150EasOveFog    0.833 0.267 -0.121 0.014 2.81 
 TanExe150WesOveFog    0.832 0.268 -0.118 0.013 2.81 
 TanExe150SouOveFog    0.795 0.296 -0.098 0.001 2.78 
 TanExe900NorCleFog    0.846 0.262 -0.131 0.019 2.85 
 TanExe900EasCleFog    0.748 0.337 -0.075 -0.015 2.76 
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Moniker a0 a1 a2 a3 

Average 
Maximum 
Detection 

Range 
 TanExe900WesCleFog    0.810 0.283 -0.102 0.004 2.81 
 TanExe900SouCleFog    0.688 0.374 -0.028 -0.041 2.72 
 TanExe150NorCleFog    0.865 0.244 -0.138 0.025 2.85 
 TanExe150EasCleFog    0.847 0.255 -0.125 0.018 2.83 
 TanExe150WesCleFog    0.817 0.279 -0.109 0.007 2.80 
 TanExe150SouCleFog    0.792 0.297 -0.093 -0.002 2.79 
 TanOff900NorCleFog    0.607 0.402 0.006 -0.054 2.49 
 TanOff900EasCleFog    0.542 0.408 0.042 -0.066 2.40 
 TanOff900WesCleFog    0.775 0.315 -0.091 -0.005 2.77 
 TanOff900SouCleFog    0.561 0.415 0.035 -0.066 2.59 
 TanOff150NorCleFog    0.789 0.300 -0.090 -0.003 2.77 
 TanOff150EasCleFog    0.832 0.269 -0.122 0.015 2.80 
 TanOff150WesCleFog    0.789 0.301 -0.092 -0.003 2.77 
 TanOff150SouCleFog    0.771 0.312 -0.079 -0.010 2.76 
 TanOff900SumNorCleFog 0.524 0.358 0.029 -0.045 2.07 
 TanOff900SumEasCleFog 0.541 0.384 0.022 -0.050 2.58 
 TanOff900SumWesCleFog 0.778 0.315 -0.098 -0.002 2.78 
 TanOff900SumSouCleFog 0.578 0.431 0.031 -0.071 2.70 
 TanOff150SumNorCleFog 0.779 0.306 -0.083 -0.007 2.75 
 TanOff150SumEasCleFog 0.840 0.264 -0.128 0.018 2.80 
 TanOff150SumWesCleFog 0.802 0.288 -0.098 0.002 2.78 
 TanOff150SumSouCleFog 0.806 0.286 -0.102 0.004 2.78 
 TanOff900WinNorCleFog 0.651 0.405 -0.010 -0.053 2.72 
 TanOff90Win0EasCleFog 0.595 0.442 0.024 -0.072 2.69 
 TanOff900WinWesCleFog 0.763 0.331 -0.092 -0.007 2.77 
 TanOff900WinSouCleFog 0.549 0.403 0.036 -0.062 2.78 
 TanOff150WinNorCleFog 0.793 0.300 -0.096 -0.001 2.81 
 TanOff150WinEasCleFog 0.810 0.286 -0.105 0.005 2.79 
 TanOff150WinWesCleFog 0.747 0.339 -0.074 -0.016 2.75 
 TanOff150WinSouCleFog 0.690 0.374 -0.029 -0.040 2.74 
 TanExe900SumNorCleFog 0.840 0.266 -0.125 0.016 2.85 
 TanExe900SumEasCleFog 0.737 0.344 -0.066 -0.020 2.75 
 TanExe900SumWesCleFog 0.809 0.282 -0.100 0.003 2.81 
 TanExe900SumSouCleFog 0.709 0.361 -0.044 -0.032 2.74 
 TanExe150SumNorCleFog 0.864 0.244 -0.138 0.025 2.85 
 TanExe150SumEasCleFog 0.846 0.254 -0.122 0.017 2.82 
 TanExe150SumWesCleFog 0.819 0.277 -0.110 0.008 2.80 
 TanExe150SumSouCleFog 0.810 0.281 -0.101 0.004 2.80 
 TanExe900WinNorCleFog 0.866 0.254 -0.147 0.027 2.85 
 TanExe90Win0EasCleFog 0.776 0.322 -0.100 -0.003 2.78 
 TanExe900WinWesCleFog 0.810 0.287 -0.105 0.004 2.82 
 TanExe900WinSouCleFog 0.680 0.380 -0.023 -0.044 2.75 
 TanExe150WinNorCleFog 0.876 0.244 -0.149 0.029 2.85 
 TanExe150WinEasCleFog 0.844 0.263 -0.129 0.018 2.85 
 TanExe150WinWesCleFog 0.809 0.287 -0.104 0.004 2.81 
 TanExe150WinSouCleFog 0.739 0.343 -0.069 -0.019 2.76 
 TanOff900SumNorOveFog 0.545 0.385 0.032 -0.055 2.01 
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Moniker a0 a1 a2 a3 

Average 
Maximum 
Detection 

Range 
 TanOff900SumEasOveFog 0.505 0.396 0.064 -0.069 2.28 
 TanOff900SumWesOveFog 0.642 0.416 -0.011 -0.054 2.67 
 TanOff900SumSouOveFog 0.532 0.411 0.047 -0.068 2.53 
 TanOff150SumNorOveFog 0.779 0.308 -0.087 -0.006 2.74 
 TanOff150SumEasOveFog 0.810 0.282 -0.103 0.005 2.78 
 TanOff150SumWesOveFog 0.810 0.284 -0.104 0.005 2.78 
 TanOff150SumSouOveFog 0.780 0.304 -0.082 -0.007 2.76 
 TanOff900WinNorOveFog 0.544 0.408 0.037 -0.063 2.69 
 TanOff900Win0EasOveFo 0.520 0.428 0.063 -0.078 2.53 
 TanOff900WinWesOveFog 0.516 0.432 0.068 -0.081 2.62 
 TanOff900WinSouOveFog 0.521 0.415 0.044 -0.066 2.74 
 TanOff150WinNorOveFog 0.739 0.346 -0.073 -0.017 2.74 
 TanOff150WinEasOveFog 0.747 0.339 -0.075 -0.016 2.74 
 TanOff150WinWesOveFog 0.743 0.342 -0.072 -0.017 2.74 
 TanOff150WinSouOveFog 0.699 0.368 -0.039 -0.035 2.73 
 TanExe900SumNorOveFog 0.840 0.266 -0.125 0.016 2.85 
 TanExe900SumEasOveFog 0.743 0.340 -0.072 -0.017 2.77 
 TanExe900SumWesOveFog 0.779 0.312 -0.092 -0.004 2.78 
 TanExe900SumSouOveFog 0.692 0.373 -0.031 -0.039 2.71 
 TanExe150SumNorOveFog 0.855 0.250 -0.131 0.021 2.85 
 TanExe150SumEasOveFog 0.840 0.261 -0.125 0.017 2.81 
 TanExe150SumWesOveFog 0.836 0.264 -0.123 0.016 2.81 
 TanExe150SumSouOveFog 0.807 0.285 -0.101 0.003 2.78 
 TanExe900WinNorOveFog 0.855 0.261 -0.138 0.022 2.85 
 TanExe900WinEasOveFog 0.745 0.340 -0.075 -0.016 2.78 
 TanExe900WinWesOveFog 0.745 0.340 -0.075 -0.016 2.78 
 TanExe900WinSouOveFog 0.683 0.379 -0.025 -0.043 2.75 
 TanExe150WinNorOveFog 0.866 0.253 -0.146 0.026 2.85 
 TanExe150WinEasOveFog 0.813 0.284 -0.108 0.006 2.81 
 TanExe150WinWesOveFog 0.809 0.287 -0.104 0.004 2.81 
 TanExe150WinSouOveFog 0.756 0.333 -0.084 -0.011 2.77 
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Table B-2.  Third-order polynomial coefficients curve fit to averaged quantities as represented by 
moniker for average sensor viewing through a fog aerosol.  NFOV results are shown.  
Coefficients in blue have associated curves presented in the graphs in this appendix. 

Moniker a0 a1 a2 a3 

Average 
Maximum 
Detection 

Range 
 150CleFog             0.323 0.606 0.211 -0.172 8.88 
 150OveFog             0.313 0.604 0.215 -0.173 8.88 
 900CleFog             0.270 0.574 0.223 -0.164 8.52 
 900OveFog             0.243 0.511 0.206 -0.136 8.22 
 Tan900CleFog          0.316 0.579 0.200 -0.159 7.59 
 Tan150CleFog          0.381 0.598 0.176 -0.160 7.80 
 Tan900OveFog          0.295 0.556 0.200 -0.151 7.62 
 Tan150OveFog          0.372 0.602 0.183 -0.164 7.80 
 TanExe150OveFog       0.394 0.593 0.166 -0.156 7.80 
 TanExe900OveFog       0.344 0.610 0.199 -0.170 7.80 
 TanExe150CleFog       0.400 0.590 0.162 -0.153 7.80 
 TanExe900CleFog       0.352 0.604 0.192 -0.166 7.80 
 TanOff900CleFog       0.271 0.548 0.209 -0.151 7.32 
 TanOff150CleFog       0.363 0.606 0.190 -0.167 7.80 
 TanOff150OveFog       0.351 0.612 0.200 -0.172 7.80 
 TanOff900OveFog       0.235 0.491 0.201 -0.128 7.39 
 TanOff900SumOveFog    0.235 0.489 0.200 -0.127 7.20 
 TanOff900WinOveFog    0.217 0.520 0.225 -0.144 8.02 
 TanOff150SumOveFog    0.360 0.602 0.192 -0.166 7.80 
 TanOff150WinOveFog    0.319 0.642 0.229 -0.190 7.80 
 TanOff900NorOveFog    0.225 0.480 0.200 -0.123 7.30 
 TanOff900EasOveFog    0.232 0.472 0.195 -0.119 7.02 
 TanOff900WesOveFog    0.249 0.523 0.210 -0.142 7.80 
 TanOff900SouOveFog    0.229 0.479 0.199 -0.123 7.36 
 TanExe900SumOveFog    0.344 0.612 0.201 -0.172 7.80 
 TanExe900WinOveFog    0.350 0.624 0.201 -0.175 7.80 
 TanExe150SumOveFog    0.397 0.590 0.164 -0.154 7.80 
 TanExe150WinOveFog    0.384 0.604 0.173 -0.160 7.80 
 TanExe900NorOveFog    0.408 0.589 0.154 -0.150 7.80 
 TanExe900EasOveFog    0.334 0.623 0.210 -0.178 7.80 
 TanExe900WesOveFog    0.343 0.621 0.206 -0.176 7.80 
 TanExe900SouOveFog    0.291 0.606 0.227 -0.176 7.80 
 TanExe150NorOveFog    0.424 0.577 0.142 -0.143 7.80 
 TanExe150EasOveFog    0.400 0.592 0.162 -0.154 7.80 
 TanExe150WesOveFog    0.391 0.595 0.169 -0.157 7.80 
 TanExe150SouOveFog    0.360 0.609 0.192 -0.168 7.80 
 TanExe900NorCleFog    0.409 0.588 0.153 -0.149 7.80 
 TanExe900EasCleFog    0.327 0.623 0.215 -0.179 7.80 
 TanExe900WesCleFog    0.386 0.601 0.173 -0.160 7.80 
 TanExe900SouCleFog    0.288 0.603 0.228 -0.176 7.80 
 TanExe150NorCleFog    0.428 0.574 0.139 -0.142 7.80 
 TanExe150EasCleFog    0.418 0.580 0.148 -0.146 7.80 
 TanExe150WesCleFog    0.390 0.596 0.170 -0.157 7.80 
 TanExe150SouCleFog    0.365 0.608 0.189 -0.167 7.80 
 TanOff900NorCleFog    0.246 0.536 0.216 -0.147 7.10 
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Moniker a0 a1 a2 a3 

Average 
Maximum 
Detection 

Range 
 TanOff900EasCleFog    0.237 0.504 0.208 -0.134 6.79 
 TanOff900WesCleFog    0.346 0.621 0.206 -0.177 7.80 
 TanOff900SouCleFog    0.229 0.504 0.209 -0.134 7.36 
 TanOff150NorCleFog    0.354 0.606 0.196 -0.169 7.80 
 TanOff150EasCleFog    0.393 0.595 0.168 -0.157 7.80 
 TanOff150WesCleFog    0.358 0.608 0.193 -0.168 7.80 
 TanOff150SouCleFog    0.345 0.615 0.204 -0.174 7.80 
 TanOff900SumNorCleFog 0.207 0.442 0.189 -0.106 6.23 
 TanOff900SumEasCleFog 0.237 0.471 0.184 -0.114 7.39 
 TanOff900SumWesCleFog 0.345 0.624 0.208 -0.178 7.80 
 TanOff900SumSouCleFog 0.230 0.518 0.215 -0.141 7.70 
 TanOff150SumNorCleFog 0.344 0.603 0.203 -0.170 7.80 
 TanOff150SumEasCleFog 0.396 0.591 0.166 -0.155 7.80 
 TanOff150SumWesCleFog 0.366 0.600 0.186 -0.164 7.80 
 TanOff150SumSouCleFog 0.367 0.600 0.186 -0.164 7.80 
 TanOff900WinNorCleFog 0.271 0.651 0.260 -0.202 7.80 
 TanOff90Win0EasCleFog 0.242 0.594 0.248 -0.178 7.80 
 TanOff900WinWesCleFog 0.340 0.630 0.209 -0.180 7.80 
 TanOff900WinSouCleFog 0.224 0.543 0.228 -0.153 8.43 
 TanOff150WinNorCleFog 0.362 0.615 0.195 -0.171 7.80 
 TanOff150WinEasCleFog 0.381 0.605 0.176 -0.162 7.80 
 TanOff150WinWesCleFog 0.334 0.633 0.216 -0.183 7.80 
 TanOff150WinSouCleFog 0.291 0.655 0.250 -0.200 7.80 
 TanExe900SumNorCleFog 0.403 0.592 0.157 -0.152 7.80 
 TanExe900SumEasCleFog 0.318 0.632 0.223 -0.184 7.80 
 TanExe900SumWesCleFog 0.384 0.602 0.175 -0.161 7.80 
 TanExe900SumSouCleFog 0.300 0.633 0.237 -0.189 7.80 
 TanExe150SumNorCleFog 0.421 0.578 0.146 -0.145 7.80 
 TanExe150SumEasCleFog 0.418 0.579 0.150 -0.147 7.80 
 TanExe150SumWesCleFog 0.391 0.594 0.169 -0.157 7.80 
 TanExe150SumSouCleFog 0.379 0.599 0.178 -0.161 7.80 
 TanExe900WinNorCleFog 0.430 0.576 0.133 -0.139 7.80 
 TanExe90Win0EasCleFog 0.347 0.627 0.203 -0.176 7.80 
 TanExe900WinWesCleFog 0.386 0.602 0.171 -0.159 7.80 
 TanExe900WinSouCleFog 0.289 0.658 0.253 -0.202 7.80 
 TanExe150WinNorCleFog 0.444 0.567 0.124 -0.134 7.80 
 TanExe150WinEasCleFog 0.414 0.584 0.149 -0.147 7.80 
 TanExe150WinWesCleFog 0.383 0.604 0.174 -0.161 7.80 
 TanExe150WinSouCleFog 0.331 0.635 0.218 -0.184 7.80 
 TanOff900SumNorOveFog 0.218 0.460 0.192 -0.113 6.02 
 TanOff900SumEasOveFog 0.225 0.445 0.182 -0.105 7.21 
 TanOff900SumWesOveFog 0.258 0.546 0.217 -0.152 7.80 
 TanOff900SumSouOveFog 0.225 0.470 0.198 -0.120 7.19 
 TanOff150SumNorOveFog 0.344 0.602 0.202 -0.170 7.80 
 TanOff150SumEasOveFog 0.379 0.599 0.178 -0.161 7.80 
 TanOff150SumWesOveFog 0.368 0.602 0.186 -0.164 7.80 
 TanOff150SumSouOveFog 0.347 0.603 0.200 -0.169 7.80 
 TanOff900WinNorOveFog 0.214 0.521 0.227 -0.146 8.58 
 TanOff900Win0EasOveFo 0.212 0.505 0.221 -0.138 7.66 
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Moniker a0 a1 a2 a3 

Average 
Maximum 
Detection 

Range 
 TanOff900WinWesOveFog 0.218 0.529 0.228 -0.148 7.79 
 TanOff900WinSouOveFog 0.225 0.528 0.223 -0.146 8.43 
 TanOff150WinNorOveFog 0.318 0.643 0.230 -0.190 7.80 
 TanOff150WinEasOveFog 0.333 0.634 0.217 -0.183 7.80 
 TanOff150WinWesOveFog 0.327 0.637 0.222 -0.186 7.80 
 TanOff150WinSouOveFog 0.296 0.655 0.247 -0.199 7.80 
 TanExe900SumNorOveFog 0.406 0.589 0.156 -0.151 7.80 
 TanExe900SumEasOveFog 0.332 0.628 0.215 -0.181 7.80 
 TanExe900SumWesOveFog 0.347 0.623 0.206 -0.177 7.80 
 TanExe900SumSouOveFog 0.290 0.608 0.229 -0.178 7.80 
 TanExe150SumNorOveFog 0.420 0.579 0.147 -0.146 7.80 
 TanExe150SumEasOveFog 0.405 0.588 0.158 -0.151 7.80 
 TanExe150SumWesOveFog 0.394 0.591 0.167 -0.156 7.80 
 TanExe150SumSouOveFog 0.368 0.600 0.185 -0.163 7.80 
 TanExe900WinNorOveFog 0.424 0.580 0.138 -0.142 7.80 
 TanExe900WinEasOveFog 0.344 0.628 0.206 -0.178 7.80 
 TanExe900WinWesOveFog 0.342 0.629 0.208 -0.179 7.80 
 TanExe900WinSouOveFog 0.290 0.657 0.252 -0.202 7.80 
 TanExe150WinNorOveFog 0.435 0.574 0.128 -0.137 7.80 
 TanExe150WinEasOveFog 0.386 0.602 0.171 -0.159 7.80 
 TanExe150WinWesOveFog 0.382 0.604 0.175 -0.161 7.80 
 TanExe150WinSouOveFog 0.333 0.634 0.217 -0.184 7.80 

The coefficients displayed in blue in table B-2 have associated curves that are presented 
in the following graphs labeled figures B-1 through B-15.  

NFOV, Fog 
f(TOD, Cloud Cover)

(averages over: sensor, season, azimuth, type, state & location)
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Figure B-1.  Normalized detection range vs. visibility for a NFOV average  
sensor in a fog aerosol as a function of TOD and cloud cover.  Averages 
were taken over seasons, locations, azimuths, target types 
and operating states, as presented in table B-2. 
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NFOV, Fog, Tank 
f(TOD & Cloud Cover) 

(averages over: sensor, season, aziumth, state & location)
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Figure B-2.  Normalized detection range vs. visibility for a NFOV average  
sensor, in a fog aerosol, viewing a tank, as a function of time of  
day and cloud cover.  Averages were taken over seasons, locations, 
azimuths, and target operating states, as presented in table B-2. 

NFOV, Fog, Tank
f(state,tod, cc)

(averages over: sensor, season, azimuth, & location)
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Figure B-3.  Normalized detection range vs. visibility for a NFOV average 
sensor in a fog aerosol as a function of target operating state, time  
of day and cloud cover.  Averages were taken over seasons, locations,  
and azimuths, as presented in table B-2. 
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NFOV, Fog, Tank under Overcast Skies
f(TOD, season, state)

(averages over: sensor, azimuth & location)
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Figure B-4.  Normalized detection range vs. visibility for a NFOV average  
sensor, in a fog aerosol, viewing a tank under overcast skies, as  
a function of TOD, season, and operating state.  Averages 
were taken over locations, and azimuths, as presented in table B-2. 

NFOV, Fog, Exercised Tank under Overcast Skies 
f(tod, azimuth)

(averages over: sensor, season & location)
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Figure B-5.  Normalized detection range vs. visibility for a NFOV average 
sensor in a fog aerosol viewing an exercised tank under overcast 
skies as a function of TOD and azimuth.  Averages were 
taken over seasons and locations, as presented in table B-2. 
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NFOV, Fog, Exercised Tank under cloudless skies 
 f(TOD, Azimuth) 

(averages over: sensor, season & location)
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Figure B-6.  Normalized detection range vs. visibility for a NFOV average  
sensor, in a fog aerosol, viewing an exercised tank under clear  
skies, as a function of TOD, and azimuth.  Averages were 
taken over seasons and locations, as presented in table B-2. 

NFOV, Fog, Off Tank under cloudless skies  
f(TOD, Azimuth) 

(average over: sensors, seasons & locations)
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Figure B-7.  Normalized detection range vs. visibility for a NFOV average 
sensor in a fog aerosol viewing an inactive tank under clear skies 
as a function of TOD and azimuth.  Averages were taken 
over seasons and locations, as presented in table B-2. 
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NFOV, Fog, Off Tank under cloudless skies, Summer 
f(TOD, Azimuth) 

(average over: sensors & location)
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Figure B-8.  Normalized detection range vs. visibility for a NFOV average  
sensor, in a fog aerosol, viewing an inactive tank under clear  
skies in the summer, as a function of TOD, and azimuth.  
Averages were taken over locations, as presented in table B-2. 
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Figure B-9.  Normalized detection range vs. visibility for a NFOV average  
sensor in a fog aerosol viewing an inactive tank under clear skies 
in the winter as a function of TOD and azimuth.  Averages 
were taken over locations, as presented in table B-2. 
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Figure B-10.  Normalized detection range vs. visibility for a NFOV average 
sensor, in a fog aerosol, viewing an exercised tank under clear 
skies in the summer, as a function of TOD, and azimuth. 
Averages were taken over locations, as presented in table B-2. 
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Figure B-11.  Normalized detection range vs. visibility for a NFOV average  
sensor in a fog aerosol viewing an exercised tank under clear  
skies in the winter as a function of TOD and azimuth. 
Averages were taken over locations, as presented in table B-2. 
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NFOV, Fog, Off Tank under overcast skies, Summer
f(TOD & Azimuth) 
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Figure B-12.  Normalized detection range vs. visibility for a NFOV average  
sensor, in a fog aerosol, viewing an inactive tank under overcast  
skies in the summer, as a function of TOD, and azimuth.  
Averages were taken over locations, as presented in table B-2. 
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Figure B-13.  Normalized detection range vs. visibility for a NFOV average  
sensor in a fog aerosol viewing an inactive tank under overcast 
skies in the winter as a function of TOD and azimuth.   
Averages were taken over locations, as presented in table B-2. 
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NFOV, Fog, Exercised Tank under overcast skies, Summer
f(TOD, Azimuth) 

(average over: sensors and locations)
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Figure B-14.  Normalized detection range vs. visibility for a NFOV average  
sensor, in a fog aerosol, viewing an exercised tank under overcast  
skies in the summer, as a function of TOD, and azimuth.   
Averages were taken over locations, as presented in table B-2. 
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Figure B-15.  Normalized detection range vs. visibility for a NFOV average  
sensor in a fog aerosol viewing an exercised tank under overcast  
skies in the winter as a function of TOD and azimuth.   
Averages were taken over locations, as presented in table B-2. 
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Appendix C.  Third-Order Polynomial Coefficients and their Curves for 
the Rural Aerosol for a NFOV and WFOV Average IR Sensor 

Table C-1.  Third-order polynomial coefficients curve fit to averaged quantities as represented by 
moniker for and average sensor viewing through a rural aerosol.  WFOV results are 
shown.  

Moniker a0 a1 a2 a3 

Average 
Maximum 
Detection 

Range 
 150CleRur             0.976 0.139 -0.168 0.052 3.60 
 150OveRur             0.972 0.146 -0.171 0.053 3.59 
 900CleRur             0.974 0.162 -0.208 0.067 3.40 
 900OveRur             0.849 0.249 -0.138 0.026 3.25 
 Tan900CleRur          1.077 0.073 -0.249 0.097 2.61 
 Tan150CleRur          0.989 0.099 -0.131 0.042 2.80 
 Tan900OveRur          0.923 0.183 -0.151 0.039 2.65 
 Tan150OveRur          0.988 0.103 -0.136 0.044 2.79 
 TanExe150OveRur       0.989 0.094 -0.123 0.039 2.81 
 TanExe900OveRur       0.987 0.119 -0.158 0.051 2.78 
 TanExe150CleRur       0.989 0.092 -0.121 0.039 2.82 
 TanExe900CleRur       0.988 0.114 -0.151 0.049 2.79 
 TanOff900CleRur       1.182 0.024 -0.364 0.153 2.40 
 TanOff150CleRur       0.988 0.106 -0.141 0.045 2.78 
 TanOff150OveRur       0.988 0.111 -0.148 0.048 2.77 
 TanOff900OveRur       0.857 0.249 -0.144 0.027 2.51 
 TanOff900SumOveRur    0.840 0.258 -0.136 0.024 2.42 
 TanOff900WinOveRur    0.837 0.274 -0.147 0.025 2.53 
 TanOff150SumOveRur    0.987 0.105 -0.139 0.045 2.77 
 TanOff150WinOveRur    0.989 0.131 -0.177 0.057 2.74 
 TanOff900NorOveRur    0.814 0.281 -0.123 0.015 2.39 
 TanOff900EasOveRur    0.833 0.263 -0.133 0.022 2.39 
 TanOff900WesOveRur    0.934 0.196 -0.181 0.050 2.67 
 TanOff900SouOveRur    0.843 0.260 -0.136 0.023 2.58 
 TanExe900SumOveRur    0.987 0.119 -0.158 0.051 2.78 
 TanExe900WinOveRur    0.990 0.119 -0.163 0.053 2.79 
 TanExe150SumOveRur    0.988 0.091 -0.118 0.038 2.81 
 TanExe150WinOveRur    0.991 0.101 -0.137 0.044 2.81 
 TanExe900NorOveRur    0.990 0.090 -0.117 0.038 2.85 
 TanExe900EasOveRur    0.989 0.121 -0.163 0.053 2.77 
 TanExe900WesOveRur    0.988 0.118 -0.159 0.051 2.78 
 TanExe900SouOveRur    0.982 0.147 -0.191 0.061 2.73 
 TanExe150NorOveRur    0.990 0.085 -0.110 0.035 2.85 
 TanExe150EasOveRur    0.989 0.091 -0.118 0.038 2.82 
 TanExe150WesOveRur    0.989 0.093 -0.123 0.039 2.81 
 TanExe150SouOveRur    0.988 0.107 -0.142 0.046 2.78 
 TanExe900NorCleRur    0.990 0.089 -0.116 0.037 2.85 
 TanExe900EasCleRur    0.989 0.123 -0.168 0.054 2.76 
 TanExe900WesCleRur    0.989 0.098 -0.129 0.041 2.82 
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Moniker a0 a1 a2 a3 

Average 
Maximum 
Detection 

Range 
 TanExe900SouCleRur    0.982 0.147 -0.192 0.061 2.72 
 TanExe150NorCleRur    0.990 0.083 -0.108 0.034 2.85 
 TanExe150EasCleRur    0.989 0.087 -0.113 0.036 2.83 
 TanExe150WesCleRur    0.989 0.094 -0.126 0.041 2.80 
 TanExe150SouCleRur    0.988 0.105 -0.139 0.045 2.79 
 TanOff900NorCleRur    1.321 -0.067 -0.466 0.210 2.48 
 TanOff900EasCleRur    1.608 -0.226 -0.736 0.348 1.84 
 TanOff900WesCleRur    0.987 0.115 -0.152 0.049 2.79 
 TanOff900SouCleRur    0.898 0.226 -0.178 0.045 2.43 
 TanOff150NorCleRur    0.988 0.108 -0.144 0.046 2.78 
 TanOff150EasCleRur    0.989 0.094 -0.123 0.039 2.81 
 TanOff150WesCleRur    0.988 0.109 -0.146 0.047 2.77 
 TanOff150SouCleRur    0.988 0.114 -0.152 0.049 2.77 
 TanOff900SumNorCleRur 0.708 0.352 -0.040 -0.031 2.62 
 TanOff900SumEasCleRur 0.792 0.292 -0.103 0.004 2.84 
 TanOff900SumWesCleRur 0.987 0.116 -0.153 0.049 2.78 
 TanOff900SumSouCleRur 0.915 0.211 -0.172 0.044 2.71 
 TanOff150SumNorCleRur 0.987 0.110 -0.147 0.048 2.76 
 TanOff150SumEasCleRur 0.988 0.092 -0.119 0.038 2.81 
 TanOff150SumWesCleRur 0.988 0.104 -0.139 0.045 2.78 
 TanOff150SumSouCleRur 0.987 0.102 -0.133 0.042 2.78 
 TanOff900WinNorCleRur 0.981 0.159 -0.207 0.066 2.74 
 TanOff90Win0EasCleRur 0.937 0.196 -0.188 0.053 2.70 
 TanOff900WinWesCleRur 0.988 0.122 -0.163 0.053 2.80 
 TanOff900WinSouCleRur 0.932 0.220 -0.235 0.071 2.22 
 TanOff150WinNorCleRur 0.988 0.107 -0.142 0.045 2.83 
 TanOff150WinEasCleRur 0.990 0.100 -0.134 0.043 2.81 
 TanOff150WinWesCleRur 0.989 0.125 -0.169 0.054 2.76 
 TanOff150WinSouCleRur 0.987 0.145 -0.198 0.064 2.74 
 TanExe900SumNorCleRur 0.990 0.091 -0.119 0.038 2.85 
 TanExe900SumEasCleRur 0.988 0.127 -0.173 0.056 2.75 
 TanExe900SumWesCleRur 0.989 0.098 -0.129 0.041 2.81 
 TanExe900SumSouCleRur 0.987 0.136 -0.183 0.059 2.74 
 TanExe150SumNorCleRur 0.988 0.086 -0.109 0.034 2.85 
 TanExe150SumEasCleRur 0.988 0.087 -0.111 0.035 2.83 
 TanExe150SumWesCleRur 0.989 0.093 -0.123 0.040 2.80 
 TanExe150SumSouCleRur 0.987 0.097 -0.126 0.041 2.81 
 TanExe900WinNorCleRur 0.995 0.082 -0.114 0.037 2.85 
 TanExe90Win0EasCleRur 0.991 0.117 -0.159 0.052 2.78 
 TanExe900WinWesCleRur 0.990 0.099 -0.134 0.043 2.85 
 TanExe900WinSouCleRur 0.988 0.151 -0.207 0.067 2.74 
 TanExe150WinNorCleRur 0.996 0.077 -0.108 0.035 2.85 
 TanExe150WinEasCleRur 0.991 0.089 -0.119 0.038 2.85 
 TanExe150WinWesCleRur 0.991 0.100 -0.136 0.044 2.81 
 TanExe150WinSouCleRur 0.990 0.124 -0.169 0.055 2.76 
 TanOff900SumNorOveRur 0.745 0.320 -0.082 -0.007 2.20 
 TanOff900SumEasOveRur 0.772 0.305 -0.103 0.004 2.10 
 TanOff900SumWesOveRur 0.963 0.173 -0.196 0.059 2.68 
 TanOff900SumSouOveRur 0.844 0.256 -0.144 0.027 2.62 
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Moniker a0 a1 a2 a3 

Average 
Maximum 
Detection 

Range 
 TanOff150SumNorOveRur 0.987 0.113 -0.150 0.049 2.75 
 TanOff150SumEasOveRur 0.988 0.098 -0.126 0.040 2.79 
 TanOff150SumWesOveRur 0.987 0.101 -0.133 0.043 2.78 
 TanOff150SumSouOveRur 0.987 0.109 -0.145 0.047 2.77 
 TanOff900WinNorOveRur 0.815 0.285 -0.142 0.023 2.47 
 TanOff900Win0EasOveRu 0.869 0.250 -0.168 0.038 2.56 
 TanOff900WinWesOveRur 0.870 0.257 -0.161 0.032 2.63 
 TanOff900WinSouOveRur 0.793 0.305 -0.119 0.009 2.45 
 TanOff150WinNorOveRur 0.989 0.129 -0.174 0.056 2.74 
 TanOff150WinEasOveRur 0.991 0.124 -0.169 0.055 2.74 
 TanOff150WinWesOveRur 0.990 0.126 -0.171 0.055 2.74 
 TanOff150WinSouOveRur 0.988 0.144 -0.195 0.063 2.73 
 TanExe900SumNorOveRur 0.990 0.091 -0.119 0.038 2.85 
 TanExe900SumEasOveRur 0.988 0.125 -0.169 0.055 2.77 
 TanExe900SumWesOveRur 0.988 0.115 -0.153 0.049 2.78 
 TanExe900SumSouOveRur 0.981 0.147 -0.192 0.062 2.72 
 TanExe150SumNorOveRur 0.988 0.087 -0.110 0.035 2.85 
 TanExe150SumEasOveRur 0.988 0.087 -0.111 0.035 2.81 
 TanExe150SumWesOveRur 0.988 0.091 -0.118 0.038 2.81 
 TanExe150SumSouOveRur 0.987 0.101 -0.133 0.043 2.78 
 TanExe900WinNorOveRur 0.994 0.084 -0.115 0.038 2.85 
 TanExe900WinEasOveRur 0.990 0.119 -0.163 0.053 2.78 
 TanExe900WinWesOveRur 0.990 0.125 -0.171 0.056 2.78 
 TanExe900WinSouOveRur 0.987 0.149 -0.204 0.066 2.75 
 TanExe150WinNorOveRur 0.994 0.082 -0.112 0.037 2.85 
 TanExe150WinEasOveRur 0.991 0.099 -0.133 0.043 2.81 
 TanExe150WinWesOveRur 0.991 0.100 -0.136 0.044 2.81 
 TanExe150WinSouOveRur 0.989 0.124 -0.167 0.054 2.77 
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Table C-2.  Third-order polynomial coefficients curve fit to averaged quantities as represented by 
moniker for an average sensor viewing through a rural aerosol.  NFOV results are 
shown.  Coefficients in blue have associated curves presented in the graphs in this 
appendix. 

Moniker a0 a1 a2 a3 

Average 
Maximum 
Detection 

Range 
 150CleRur             0.866 0.320 -0.248 0.061 8.88 
 150OveRur             0.849 0.331 -0.233 0.053 8.88 
 900CleRur             0.838 0.326 -0.238 0.057 8.51 
 900OveRur             0.645 0.424 -0.077 -0.023 8.12 
 Tan900CleRur          1.004 0.227 -0.370 0.128 7.42 
 Tan150CleRur          0.930 0.274 -0.289 0.085 7.80 
 Tan900OveRur          0.753 0.372 -0.158 0.017 7.50 
 Tan150OveRur          0.921 0.281 -0.283 0.081 7.80 
 TanExe150OveRur       0.947 0.263 -0.302 0.092 7.80 
 TanExe900OveRur       0.890 0.304 -0.264 0.070 7.80 
 TanExe150CleRur       0.951 0.259 -0.303 0.093 7.80 
 TanExe900CleRur       0.902 0.295 -0.272 0.075 7.80 
 TanOff900CleRur       1.127 0.145 -0.488 0.192 6.95 
 TanOff150CleRur       0.909 0.289 -0.274 0.076 7.80 
 TanOff150OveRur       0.895 0.299 -0.265 0.071 7.80 
 TanOff900OveRur       0.609 0.442 -0.047 -0.038 7.18 
 TanOff900SumOveRur    0.597 0.441 -0.042 -0.039 6.98 
 TanOff900WinOveRur    0.592 0.467 -0.032 -0.050 7.57 
 TanOff150SumOveRur    0.888 0.299 -0.254 0.066 7.80 
 TanOff150WinOveRur    0.908 0.301 -0.290 0.081 7.80 
 TanOff900NorOveRur    0.571 0.457 -0.019 -0.051 6.91 
 TanOff900EasOveRur    0.590 0.435 -0.038 -0.038 6.63 
 TanOff900WesOveRur    0.687 0.422 -0.100 -0.016 7.78 
 TanOff900SouOveRur    0.583 0.457 -0.026 -0.049 7.36 
 TanExe900SumOveRur    0.892 0.303 -0.265 0.070 7.80 
 TanExe900WinOveRur    0.936 0.282 -0.311 0.093 7.80 
 TanExe150SumOveRur    0.935 0.268 -0.288 0.085 7.80 
 TanExe150WinOveRur    0.979 0.250 -0.338 0.109 7.80 
 TanExe900NorOveRur    0.976 0.246 -0.327 0.105 7.80 
 TanExe900EasOveRur    0.884 0.310 -0.262 0.068 7.80 
 TanExe900WesOveRur    0.904 0.297 -0.277 0.076 7.80 
 TanExe900SouOveRur    0.797 0.364 -0.191 0.030 7.80 
 TanExe150NorOveRur    0.969 0.244 -0.313 0.099 7.80 
 TanExe150EasOveRur    0.956 0.257 -0.308 0.095 7.80 
 TanExe150WesOveRur    0.948 0.263 -0.302 0.092 7.80 
 TanExe150SouOveRur    0.915 0.287 -0.282 0.080 7.80 
 TanExe900NorCleRur    0.977 0.245 -0.327 0.105 7.80 
 TanExe900EasCleRur    0.874 0.316 -0.253 0.063 7.80 
 TanExe900WesCleRur    0.963 0.256 -0.319 0.100 7.80 
 TanExe900SouCleRur    0.795 0.363 -0.189 0.030 7.80 
 TanExe150NorCleRur    0.971 0.243 -0.313 0.100 7.80 
 TanExe150EasCleRur    0.966 0.247 -0.311 0.098 7.80 
 TanExe150WesCleRur    0.946 0.264 -0.301 0.091 7.80 
 TanExe150SouCleRur    0.923 0.282 -0.288 0.083 7.80 
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Moniker a0 a1 a2 a3 

Average 
Maximum 
Detection 

Range 
 TanOff900NorCleRur    1.263 0.068 -0.599 0.250 7.53 
 TanOff900EasCleRur    1.806 -0.269 -1.089 0.511 5.27 
 TanOff900WesCleRur    0.917 0.289 -0.289 0.083 7.80 
 TanOff900SouCleRur    0.645 0.417 -0.085 -0.018 7.03 
 TanOff150NorCleRur    0.899 0.296 -0.267 0.072 7.80 
 TanOff150EasCleRur    0.950 0.261 -0.304 0.093 7.80 
 TanOff150WesCleRur    0.906 0.292 -0.274 0.076 7.80 
 TanOff150SouCleRur    0.880 0.309 -0.252 0.064 7.80 
 TanOff900SumNorCleRur 0.468 0.514 0.068 -0.096 8.05 
 TanOff900SumEasCleRur 0.561 0.492 0.002 -0.069 8.34 
 TanOff900SumWesCleRur 0.914 0.291 -0.287 0.081 7.80 
 TanOff900SumSouCleRur 0.666 0.424 -0.090 -0.019 7.74 
 TanOff150SumNorCleRur 0.861 0.317 -0.232 0.054 7.80 
 TanOff150SumEasCleRur 0.937 0.266 -0.289 0.086 7.80 
 TanOff150SumWesCleRur 0.896 0.295 -0.260 0.069 7.80 
 TanOff150SumSouCleRur 0.900 0.293 -0.265 0.072 7.80 
 TanOff900WinNorCleRur 0.809 0.362 -0.208 0.037 7.80 
 TanOff90Win0EasCleRur 0.738 0.404 -0.147 0.006 7.80 
 TanOff900WinWesCleRur 0.965 0.269 -0.342 0.108 7.80 
 TanOff900WinSouCleRur 0.658 0.408 -0.107 -0.006 6.87 
 TanOff150WinNorCleRur 0.978 0.255 -0.345 0.111 7.80 
 TanOff150WinEasCleRur 0.987 0.247 -0.348 0.114 7.80 
 TanOff150WinWesCleRur 0.937 0.283 -0.314 0.094 7.80 
 TanOff150WinSouCleRur 0.840 0.343 -0.234 0.051 7.80 
 TanExe900SumNorCleRur 0.981 0.245 -0.334 0.108 7.80 
 TanExe900SumEasCleRur 0.848 0.331 -0.231 0.052 7.80 
 TanExe900SumWesCleRur 0.965 0.255 -0.322 0.101 7.80 
 TanExe900SumSouCleRur 0.828 0.345 -0.216 0.043 7.80 
 TanExe150SumNorCleRur 0.960 0.250 -0.305 0.095 7.80 
 TanExe150SumEasCleRur 0.954 0.252 -0.298 0.092 7.80 
 TanExe150SumWesCleRur 0.932 0.270 -0.286 0.084 7.80 
 TanExe150SumSouCleRur 0.923 0.278 -0.282 0.081 7.80 
 TanExe900WinNorCleRur 1.000 0.229 -0.343 0.114 7.80 
 TanExe90Win0EasCleRur 0.970 0.262 -0.341 0.109 7.80 
 TanExe900WinWesCleRur 0.993 0.241 -0.350 0.116 7.80 
 TanExe900WinSouCleRur 0.844 0.342 -0.240 0.054 7.80 
 TanExe150WinNorCleRur 1.000 0.226 -0.340 0.113 7.80 
 TanExe150WinEasCleRur 0.997 0.234 -0.346 0.115 7.80 
 TanExe150WinWesCleRur 0.987 0.244 -0.344 0.113 7.80 
 TanExe150WinSouCleRur 0.933 0.286 -0.313 0.093 7.80 
 TanOff900SumNorOveRur 0.529 0.459 0.005 -0.058 6.87 
 TanOff900SumEasOveRur 0.531 0.444 0.000 -0.052 5.73 
 TanOff900SumWesOveRur 0.717 0.412 -0.123 -0.006 7.80 
 TanOff900SumSouOveRur 0.578 0.458 -0.026 -0.049 7.38 
 TanOff150SumNorOveRur 0.860 0.317 -0.230 0.053 7.80 
 TanOff150SumEasOveRur 0.924 0.277 -0.282 0.081 7.80 
 TanOff150SumWesOveRur 0.901 0.292 -0.265 0.072 7.80 
 TanOff150SumSouOveRur 0.869 0.312 -0.238 0.058 7.80 
 TanOff900WinNorOveRur 0.569 0.488 -0.006 -0.065 7.53 
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Moniker a0 a1 a2 a3 

Average 
Maximum 
Detection 

Range 
 TanOff900Win0EasOveRu 0.617 0.449 -0.056 -0.036 7.52 
 TanOff900WinWesOveRur 0.634 0.436 -0.070 -0.028 7.72 
 TanOff900WinSouOveRur 0.544 0.498 0.008 -0.071 7.49 
 TanOff150WinNorOveRur 0.903 0.304 -0.285 0.079 7.80 
 TanOff150WinEasOveRur 0.943 0.279 -0.319 0.097 7.80 
 TanOff150WinWesOveRur 0.932 0.286 -0.309 0.092 7.80 
 TanOff150WinSouOveRur 0.853 0.335 -0.246 0.058 7.80 
 TanExe900SumNorOveRur 0.981 0.243 -0.333 0.108 7.80 
 TanExe900SumEasOveRur 0.875 0.315 -0.255 0.064 7.80 
 TanExe900SumWesOveRur 0.915 0.290 -0.287 0.081 7.80 
 TanExe900SumSouOveRur 0.794 0.365 -0.187 0.028 7.80 
 TanExe150SumNorOveRur 0.958 0.251 -0.303 0.094 7.80 
 TanExe150SumEasOveRur 0.945 0.261 -0.296 0.089 7.80 
 TanExe150SumWesOveRur 0.935 0.269 -0.289 0.086 7.80 
 TanExe150SumSouOveRur 0.900 0.293 -0.265 0.072 7.80 
 TanExe900WinNorOveRur 0.999 0.231 -0.345 0.115 7.80 
 TanExe900WinEasOveRur 0.954 0.276 -0.333 0.103 7.80 
 TanExe900WinWesOveRur 0.945 0.280 -0.324 0.099 7.80 
 TanExe900WinSouOveRur 0.845 0.341 -0.241 0.055 7.80 
 TanExe150WinNorOveRur 0.999 0.229 -0.341 0.114 7.80 
 TanExe150WinEasOveRur 0.988 0.243 -0.345 0.113 7.80 
 TanExe150WinWesOveRur 0.985 0.246 -0.344 0.112 7.80 
 TanExe150WinSouOveRur 0.944 0.280 -0.322 0.098 7.80 

The coefficients displayed in blue in table C-2 have associated curves that are presented 
in the following graphs labeled figures C-1 through C-15.  
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Figure C-1.  Normalized detection range vs. visibility for a NFOV average  
sensor in a rural aerosol as a function of TOD and cloud  
cover.  Averages were taken over seasons, locations, azimuths,  
target types and operating states, as presented in table C-2. 
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NFOV, Rural, Tank 
f(TOD & Cloud Cover) 

(averages over: sensor, season, aziumth, state & location)
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Figure C-2.  Normalized detection range vs. visibility for a NFOV average  
sensor, in a rural aerosol, viewing a tank, as a function of time of  
day and cloud cover.  Averages were taken over seasons, locations,  
azimuths, and target operating states, as presented in table C-2. 

NFOV, Rural, Tank
f(state,tod, cc)

(averages over: sensor, season, azimuth, & location)
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Figure C-3.  Normalized detection range vs. visibility for a NFOV average  
sensor in a rural aerosol as a function of target operating state, time  
of day and cloud cover.  Averages were taken over seasons, locations,  
and azimuths, as presented in table C-2. 
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NFOV, Rural, Tank under Overcast Skies
f(TOD, season, state)

(averages over: sensor, azimuth & location)
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Figure C-4.  Normalized detection range vs. visibility for a NFOV average  
sensor, in a rural aerosol, viewing a tank under overcast skies,  
as a function of TOD, season, and operating state.  Averages  
were taken over locations, and azimuths, as presented in table C-2. 

NFOV, Rural, Exercised Tank under Overcast Skies 
f(tod, azimuth)

(averages over: sensor, season & location)
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Figure C-5.  Normalized detection range vs. visibility for a NFOV average  
sensor in a rural aerosol viewing an exercised tank under overcast  
skies as a function of TOD and azimuth.  Averages were taken  
over seasons and locations, as presented in table C-2. 
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NFOV, Rural, Exercised Tank under cloudless skies 
 f(TOD, Azimuth) 

(averages over: sensor, season & location)
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Figure C-6.  Normalized detection range vs. visibility for a NFOV average  
sensor, in a rural aerosol, viewing an exercised tank under clear  
skies, as a function of TOD, and azimuth.  Averages were  
taken over seasons and locations, as presented in table C-2. 
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Figure C-7.  Normalized detection range vs. visibility for a NFOV average  
sensor in a rural aerosol viewing an inactive tank under clear  
skies as a function of TOD and azimuth.  Averages were  
taken over seasons and locations, as presented in table C-2. 
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NFOV, Rural, Off Tank under cloudless skies, Summer 
f(TOD, Azimuth) 

(average over: sensors & location)
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Figure C-8.  Normalized detection range vs. visibility for a NFOV average  
sensor, in a rural aerosol, viewing an inactive tank under clear  
skies in the summer, as a function of TOD, and azimuth.   
Averages were taken over locations, as presented in table C-2. 

NFOV, Rural, Off Tank under cloudless skies, Winter 
f(TOD & Azimuth) 
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Figure C-9.  Normalized detection range vs. visibility for a NFOV average  
sensor in a rural aerosol viewing an inactive tank under clear  
skies in the winter as a function of TOD and azimuth.   
Averages were taken over locations, as presented in table C-2. 
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NFOV, Rural, Exercised Tank under cloudless skies, Summer 
f(TOD, Azimuth) 

(average over: sensors & locations)
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Figure C-10.  Normalized detection range vs. visibility for a NFOV average  
sensor, in a rural aerosol, viewing an exercised tank under clear  
skies in the summer, as a function of TOD, and azimuth.   
Averages were taken over locations, as presented in table C-2. 

NFOV, Rural, Exercised Tank under cloudless skies, Winter
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Figure C-11.  Normalized detection range vs. visibility for a NFOV average  
sensor in a rural aerosol viewing an exercised tank under clear  
skies in the winter as a function of TOD and azimuth.   
Averages were taken over locations, as presented in table c-2. 
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NFOV, Rural, Off Tank under overcast skies, Summer
f(TOD & Azimuth) 

(averages over: sensors & locations)
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Figure C-12.  Normalized detection range vs. visibility for a NFOV average  
sensor, in a rural aerosol, viewing an inactive tank under overcast  
skies in the summer, as a function of TOD, and azimuth.   
Averages were taken over locations, as presented in table C-2. 
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Figure C-13.  Normalized detection range vs. visibility for a NFOV average  
sensor in a rural aerosol viewing an inactive tank under overcast  
skies in the winter as a function of TOD and azimuth.   
Averages were taken over locations, as presented in table C-2. 
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NFOV, Rural, Exercised Tank under overcast skies, Summer
f(TOD, Azimuth) 

(average over: sensors and locations)
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Figure C-14.  Normalized detection range vs. visibility for a NFOV average  
sensor, in a rural aerosol, viewing an exercised tank under overcast  
skies in the summer, as a function of TOD, and azimuth.   
Averages were taken over locations, as presented in table C-2. 
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Figure C-15.  Normalized detection range vs. visibility for a NFOV average  
sensor in a rural aerosol viewing an exercised tank under overcast  
skies in the winter as a function of TOD and azimuth.   
Averages were taken over locations, as presented in table C-2. 
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Abbreviations and Symbols 

APC    armored personnel carrier  

ARL/BED  Army Research Laboratory/Battlefield Environment Division 

AWARS   Advanced Warfighting Simulation 

C2   Command and Control 

CASTFOREM Combined Arms Support Task Force Evaluation Model 

CBS   Corps Battle Simulation 

CEM   Concepts Evaluation Model 

COMBAT XXI Combined Arms Analysis Tool for the XXIst Century 

DF   direct fire 

FOV   field of view 

FWA   fixed-wing aircraft 

HEAT   High Explosive Anti-Tank 

helo   helicopter 

HF   High Frequency 

IR   Infrared 

ISR    Intelligence Surveillance and Reconnaissance  

IWEDA  Integrated Weather Effects Decision Aid 

JCATS   Joint Conflict and Tactical Simulation 

JSIMS   Joint Simulation System 

JWARS  Joint Warfare System 

LOS   Line of Sight 

LWIR   long-wave IR 

NFOV   narrow field of view 

NVESD   Night Vision and Electronic Sensors Directorate 
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OneSAF  One Semi-automated Forces 

OR   operations research 

TACWAR  Tactical Warfare Model 

TAWS   Target Acquisition Weapons Software 

TAWS   Target Acquisition Weapons Software 

TOD   Time of Day 

TOD   time of day 

TRAC    TRADOC Analysis Center 

VIC   Vector in Commander 

WARSIM  Warfighter's Simulation 

WFOV   Wide Field of View 

WFOV   wide field of vision 
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